首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dynamic TDD Fixed Cellular Systems Using Smart and Sectored Antennas   总被引:1,自引:0,他引:1  
There are many benefits in using time division duplex (TDD) instead of frequency division duplex (FDD) schemes in fixed wireless cellular systems. For example, channel reciprocity for a single carrier frequency used on both uplinks and downlinks will allow easy access to channel state information, reduced complexity of RF design, much higher flexibility in handling dynamic traffic, simpler frequency plan, etc. However, there exists a serious limiting factor in using dynamic TDD (D-TDD) in cellular systems. This is due to a steady interference on an uplink in any cell caused by downlink transmissions in other cells. Simulation results show in D-TDD cellular systems, performance is unacceptable, when an omnidirectional antenna is used at base stations. Simulation results also suggest great potential for smart antennas in achieving substantial performance improvement in fixed D-TDD bandwidth-on-demand wireless systems.  相似文献   

2.
Dynamic TDD and fixed cellular networks   总被引:1,自引:0,他引:1  
There are many benefits in using time division duplex (TDD) instead of frequency division duplex (FDD) schemes in fixed wireless cellular systems. To name a few; channel reciprocity for the single carrier frequency used on both up and downlinks will allow easy access to channel state information, reduced complexity of RF design, much higher flexibility in handling dynamic traffic, simpler frequency plan, etc. However, there exists a serious limiting factor in using dynamic-TDD (D-TDD) in cellular systems. This is due to a steady interference on uplinks in a cell, caused by downlink transmissions of other cells. Simulation results show in D-TDD cellular systems, performance is unacceptable, when omni-directional antennas are used at base stations. Simulation results have also demonstrated a great potential for smart antennas in fixed D-TDD bandwidth-on-demand wireless systems  相似文献   

3.
One of the key advantages for the time-division duplex (TDD) system is the capability to deliver asymmetric traffic services by allocating different numbers of uplink and downlink time slots. However, in a TDD/code-division multiple-access (CDMA) system, asymmetric traffic may result in severe opposite-direction interference because downlink transmitted signals from neighboring base stations may interfere with the uplink received signals of the home cell. In this paper, we investigate the effect of four-antenna beamforming schemes from the perspective of suppressing the opposite-direction interference. We compare the uplink bit energy-to-interference density ratio of a traditional beam-steering technique (Scheme I) with that of the minimum-variance distortionless-response (MVDR) beamformer (Scheme II). Furthermore, Scheme III applies the conventional beam-steering technique for both downlink transmissions and the uplink reception. In Scheme IV, we implement beam-steering for downlink transmissions, while adopting the MVDR beamformer to process the uplink signals received at base stations. Our numerical results indicate that Scheme IV outperforms all the other three schemes, which can effectively suppress the strong opposite-direction interference in TDD/CDMA systems. While keeping low implementation costs in mind, employing the simpler Scheme III in a sectorized cellular system can also allow every cell to provide different rates of asymmetric traffic services.  相似文献   

4.
An advantage of time division duplex (TDD) wireless networks over frequency division duplex (FDD) is that the UL-DL switching point may be flexibly adapted to asymmetric traffic loads. This enables more efficient spectrum use, but on the other hand may lead to harmful cross-link interference between cells. As a result, the net gain (or loss) from flexible TDD depends on the traffic characteristics and network scenario. In this paper we address the problem in local area packet data networks, such as small- or femto-cell network, where high fluctuation in short term traffic loads is expected. We show through analysis and system level simulations that in such a scenario a significant gain in effective user throughput and packet delays may be achieved under low traffic loads. At high load the gain becomes smaller as packets accumulate in queues and there is both UL and DL traffic to transmit with high probability. When the UL and DL transmit powers are not balanced and switching point adaptation is applied the link direction with lower power may provide degraded performance. We show that introducing interference awareness at the scheduler provides more balanced performance and lowers the packet delays further.  相似文献   

5.
The evolution path of 4G networks: FDD or TDD?   总被引:2,自引:0,他引:2  
Frequency-division duplexing and time-division duplexing are two common duplexing methods used in various wireless systems. However, there are advantages and technical issues associated with them. In this article we discuss in detail the features, and the design and implementation challenges of FDD and TDD systems for 4G wireless systems. In particular, we present a number of advantages and flexibilities an TDD system can bring to 4G systems that an FDD system cannot offer, and identify the major challenges, including cross-slot interference, in applying TDD in practice. Due to the fact that cross-slot interference is one of the critical challenges to employing TDD in cellular networks, we also provide a quantitative analysis on its impact on co-channel and adjacent channel interfering cells  相似文献   

6.
Comparison of time slot allocation strategies for CDMA/TDD systems   总被引:9,自引:0,他引:9  
The traffic (load) asymmetry between uplink and downlink is a remarkable traffic characteristic in cellular mobile multimedia communications. The code division multiple access system with time division duplex mode (CDMA/TDD system), adopting unbalanced slot allocation between uplink and downlink, is a good solution for this traffic asymmetry. However, the level of traffic asymmetry may be significantly different from cell to cell. In this paper, we investigate a slot allocation strategy (DA strategy), by which each cell has its own slot allocation according to the level of traffic asymmetry. We compute the system capacity with DA strategy and find out the optimal slot allocation for the system. We also compare the maximum capacity to that with another strategy (SA strategy), by which all cells have the same slot allocation. As a result, this paper shows that the system with DA strategy outperforms the system with SA strategy in the aspect of capacity  相似文献   

7.
传统的软频率复用(SFR)无法适应长期演进(LTE)系统中业务的动态分布,可能导致小区中心和边缘区域频谱利用率不均。针对此问题,该文提出一种基于认知的LTE系统动态频谱分配方法(Cog-DSA)。该方法利用基站间的相互协作获得频谱使用状态信息,从而确定可用频谱集合,并评估来自邻小区的同频干扰,最终根据可用资源块的通信质量,对重负荷小区边缘进行频谱的动态借用和服务基站的灵活选择。仿真结果表明,所提方法能够有效改善频谱利用率,减少小区间干扰,显著提升边缘用户的传输速率。  相似文献   

8.
In this paper, we consider a fixed wireless cellular network that uses dynamic time division duplex (D-TDD). We analyze the signal-to-interference ratio (SIR) outage performance of a D-TDD fixed cellular system, and propose a scheme to improve the outage probability performance. First, outage probability is evaluated using an analytical model, when omnidirectional antennas are deployed at a base-station site and a subscriber site. Our model is verified, using Monte Carlo simulations. According to our investigation, the outage performance of the D-TDD system is severely limited by a strong interference from the cochannel cell on the downlink, while the reference cell is in the uplink cycle. To improve the outage performance during uplink receptions, we introduce two time-slot allocation methods, combined with sector antennas: max min{SIR} and max{SIR}. Max min{SIR} is an exhaustive search algorithm for assigning subscribers to a few extra uplink time slots, so as to maximize the minimum SIR expectation value over the extra uplink time-slots region. It is used as a performance benchmark in our analysis. Meanwhile, the max{SIR} is a simpler and efficient algorithm for improving the outage performance. It is established that the performance difference between the two algorithms is not noticeable. Especially, the difference is negligible, when the dynamic range of the traffic pattern between uplink and downlink is small. Also, the outage performance of a system that employs the max{SIR} algorithm combined with sectored antennas is compared to that of a system employing adaptive-array antennas. The proposed system shows promise, and offers a compromise between system complexity and network guaranteed availability.  相似文献   

9.
This paper proposes a time-division multiple-access/time-division duplex (TDMA/TDD)-based symbol rate and modulation level-controlled adaptive modulation system for high-bit-rate data transmission. The proposed system controls both the symbol rate and modulation level for the next transmission time slot according to the estimated carrier power to noise spectral density ratio (C/N0) and delay spread for the time slot to achieve higher bit rate and higher transmission quality as well as higher delay-spread immunity. It is demonstrated by computer simulation and laboratory experiments that the proposed system can achieve a higher average bit rate with higher transmission quality in comparison with the fixed-rate quaternary phase-shift keying (QPSK) system and modulation level-controlled adaptive modulation system in both flat Rayleigh and frequency-selective fading environments. The simulated and experimental results also show that the proposed adaptive modulation techniques can be applied to 1-2-Mb/s indoor and outdoor microcellular systems with its delay spread of up to 250 ns and its terminal mobility of up to pedestrian speed without employing any special antifrequency-selective fading techniques, such as the adaptive equalizer and space diversity  相似文献   

10.
An important issue in wireless multimedia communications is to cope with the traffic asymmetry between uplink and downlink. The asymmetrical slot allocation in the code division multiple-access systems with time-division duplex mode (CDMA/TDD systems) can be a good solution for this problem. However, the level of traffic asymmetry can be significantly different from cell to cell. In this letter, we calculate the utilization of a CDMA/TDD system for the multicell model. In addition, we suggest an optimal slot allocation that maximizes the frequency utilization  相似文献   

11.
区间干扰是室内多媒体广播传输最主要的影响因素之一.本文中提出了一种基于光OFDM的室内可见光多媒体广播系统.该系统一方面能够有效避免区间干扰,提高频谱效率,另一方面能够有效提高整个系统的功率效率,并且保证室内照明效果.本文针对所设计的可见光多媒体广播系统,研究了相关参数对系统性能的影响,仿真并分析了系统光照效果、信噪比、频谱效率以及功率效率等性能指标,并与其它系统进行比较,验证了系统在干扰抑制和功率效率方面的优势.  相似文献   

12.
Code division multiple access system with time division duplex (CDMA‐TDD) is a promising solution to cope with traffic asymmetry of downlink (DL) and uplink (UL) in multimedia services. When a rate of asymmetry is different in each cell, CDMA‐TDD system may employ crossed slots, where a timeslot is used for different links in cells. However, it may suffer from base station (BS)‐to‐BS and mobile station (MS)‐to‐MS interference problem. Zone division scheme is an efficient way to tackle the crossed slot interference by dividing a cell into inner and outer zones and restricting communication in crossed slots only to inner zone. In this paper, we propose distributed crossed slot resource allocation with zone division in multi‐cell CDMA‐TDD system. Two conditions for crossed slot resource allocation are defined and the bound on the size of inner zone is analyzed mathematically based on the conditions. Relationship between the capacity of crossed slot and the size of inner zone is also analyzed. Then, numerical results of the mathematical analysis are presented; showing that the proposed crossed slot allocation is effective for traffic asymmetry problem. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
1IntroductionThe next generation mobile communication systemissupposedto provide high data rate services such as Inter-net access and multi media applications whichare morelikelyto be affected by Inter-Symbol-Interference(ISI)inwireless multi-path fading …  相似文献   

14.
This paper deals with the determination of downlink (DL) and uplink (UL) channel split ratio for time division duplex (TDD) based long term evolution (LTE) networks. In a TDD system, UL and DL transmissions are carried out at different time intervals, but share the same frequency band. The TDD framing in LTE is adaptive in the sense that the DL to UL bandwidth ratio may vary with time. This paper proposes an adaptive split ratio (ASR) scheme for LTE networks to automatically adjust the bandwidth ratio of DL to UL, according to the current traffic profile, wireless interference, and transport layer parameters. This provides the maximum aggregate throughput in LTE systems. The performance analysis shows that ASR scheme outperforms static allocation in terms of higher aggregate throughput and better adaptively to network dynamics. Further, it is also observed that the ASR scheme performs well for LTE, compared to worldwide interoperability for microwave access (WiMAX) system.  相似文献   

15.
在基于多输入多输出-正交频分复用(MIMO-OFDM)技术的下一代宽频无线通信系统中,为了提高频谱利用率,一般采用同频组网,这就在小区边缘引入了同频干扰,影响了系统覆盖范围、容量以及边缘用户的切换体验。分布式多天线系统可以有效地解决上述问题,它通过拉远天线的距离,充分利用多输入多输出(MIMO)技术的空间分集和宏分集优势,通过集中式的预编码、用户调度、功率控制等策略较好地控制基站内不同小区间的干扰,尤其适合于增强数据热点地区的覆盖,减少用户的切换次数,提升小区边缘用户的服务质量。  相似文献   

16.
低轨(LEO)卫星跳波束技术可以灵活分配系统资源,适用于业务分布不均匀的场景。时分双工(TDD)方式可以减少星载和地面终端设备的天线数量,有效降低其复杂度,并有利于开展上下行非对称业务。本文提出一种基于TDD的LEO卫星跳波束资源分配算法,在满足业务需求的基础上,以最小化时域资源消耗为目标,建立支持跳波束和多频时分多址接入(MF-TDMA)机制的LEO卫星反向链路资源分配模型;综合考虑星地动态时延补偿,采取一种多层次的跳波束时隙架构设计,以最大化可用时隙为目标,建立上下行时隙切换模型,并提出一种基于TDD的跳波束时隙排布优化方法。仿真结果表明,对比于传统的MF-TDMA资源分配方法或固定多波束均分算法,本文提出的算法能有效提高系统的时隙利用率和吞吐量。  相似文献   

17.
This paper presents efficient dynamic resource allocation schemes with interference mitigation techniques for multimedia services in downlink orthogonal frequency-division multiplexing mobile cellular systems. Performance of the proposed algorithms is evaluated in terms of user quality-of-service and system spectral efficiency. It is shown that the best subcarrier allocation scheme with interference mitigation and macrodiversity techniques gives significant performance gains in terms of system spectral efficiency. Furthermore, sharing the system bandwidth among real-time stream-type voice and bursty data services can support much larger system loads than having a hard division.  相似文献   

18.
This paper proposes a new priority metric for fast dynamic channel allocation (DCA) in TD-SCDMA system, which reallocates radio resource units (RUs) to bearer services in a cell. It allows for developing a new interference-adaptive fast DCA algorithm, which is more flexible with a non-uniform user distribution. It considers the relative transmission opportunities with respect to the residual capacity and co-channel interference levels for all users, which steadily varies in the real communication environment. The proposed fast DCA algorithm aims to fully utilize the physical resource available in the time-division duplexing (TDD)-based CDMA system subject to the various types of inter-cell interference, as opposed to most existing algorithms in which traffic load and quality of service cannot be jointly balanced among the multiple radio resource units in a flexible manner. The simulation results show that the proposed algorithm improves the outage performance while reducing the average system interference, achieving full utilization of the physical resource, i.e., 48 RUs in TD-SCDMA, over a wide range of acceptable outage performance.  相似文献   

19.
This paper discusses system design strategies and performance evaluation for adaptive modulation techniques used in new and up-and-coming wireless access systems. After a brief discussion on basic modulation parameter (MP) settings as well as functionalities specific for adaptive modulation systems, this paper discusses how to design a narrowband time-division multiple-access/time-division duplex (TDMA/TDD)-based adaptive modulation system and confirms through laboratory experiments that the narrowband TDMA/TDD-based adaptive modulation system dramatically enhances system robustness to multipath fading and flexibility in throughput and transmission quality control. Next, as an extension to many fields of application for adaptive modulation, this paper discusses subcarrier-level adaptive modulation for orthogonal frequency-division multiplexing (OFDM)-based one-cell reuse broadband cellular systems. One key result is that nonsubcarrier transmit power control (TPC) applied adaptive modulation systems can achieve almost the same performance as subcarrier TPC applied adaptive modulation systems provided that the required signal-to-noise-plus-interference power ratio increment in the MP sets is designed to be sufficiently small. Finally, this paper explains the dynamic parameter controlled OFDM/TDMA system as an example of a practical scheme for one-cell reuse broadband wireless access systems. The analysis confirms that this adaptive system can achieve a spatial reuse efficiency defined by (average throughput in multicell conditions)/(average throughput in single cell conditions) of 0.8 as well as an average media access control payload throughput of about 150 Mb/s using about 100 MHz of bandwidth.  相似文献   

20.
It has been demonstrated that code division multiple access (CDMA) provides great flexibility by enabling efficient multiuser access in a cellular environment. In addition, time division duplex (TDD) as compared to frequency division duplex (FDD) represents an appropriate method to cater for the asymmetric use of a duplex channel. However, the TDD technique is subject to additional interference mechanisms compared to an FDD system, in particular if neighboring cells require different rates of asymmetry. If TDD is combined with an interference limited multiple access technique such as CDMA, the additional interference mechanism represents an important issue. This issue poses the question of whether a CDMA/TDD air-interface can be used in a cellular environment. The problems are eased if a hybrid time division multiple access (TDMA)/CDMA interface (TD-CDMA) is used. The reason for this is that the TDMA component adds another degree of freedom which can be utilized to avoid interference. This, however, requires special channel assignment techniques. A notable example of a system which uses a TD-CDMA/TDD interface is the Universal Mobile Telecommunications System (UMTS). This paper presents a novel centralized dynamic channel assignment (DCA) algorithm for a TD-CDMA/TDD air-interface. The DCA algorithm exploits a new technique which is termed “TS-opposing technique.” The key result is that the new DCA algorithm enables neighboring cells to adopt different rates of asymmetry without a significant capacity loss  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号