首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
煤矿开采过程中覆岩破坏容易引发工作面溃砂、突水事故,为了保证卧龙湖煤矿8101工作面安全开采,根据矿区覆岩工程地质特征及矿区岩层柱状图,建立了FLAC3D数值模拟模型.通过FLAC3D软件模拟,得到了工作面推进时的覆岩应力场及覆岩塑性区分布图,由此分析得出在开切眼和煤壁处覆岩主要为剪切破坏,采空区上部主要为拉伸破坏,得到煤层开采时覆岩最大主应力1.78MPa,最大导水裂隙带高度31m.  相似文献   

2.
With the gradual depletion of shallow coal resources, the Yanzhou mine in China will enter the lower coal seam mining phase. However, as mining depth increases, lower coal seam mining in Yanzhou is threatened by water inrush in the Benxi Formation limestone and Ordovician limestone. The existing prediction models for the water burst at the bottom of the coal seam are less accurate than expected owing to various controlling factors and their intrinsic links. By analyzing the hydrogeological exploration data of the Baodian lower seam and combining the results of the water inrush coefficient method and the Yanzhou mine pressure seepage test, an evaluation model of the seepage barrier capacity of the fault was established. The evaluation results show the water of the underlying limestone aquifer in the Baodian mine area mainly threatens the lower coal mining through the fault fracture zone. The security of mining above confined aquifer in the Baodian mine area gradually decreases from southwest to northeast. By comparing the water inrush coefficient method and the evaluation model of fault impermeability, the results show the evaluation model based on seepage barrier conditions is closer to the actual situation when analyzing the water breakout situation at the working face.  相似文献   

3.
A theory of seepage instability was used to estimate the harmfulness of water-inrush from a coal seam floor in a particular coal mine of the Mining Group, Xuzhou.Based on the stratum column chart in this coal mine, the distribution of stress in mining floors when the long-wall mining was respectively pushed along to 100 m and to 150 m was simulated by using the numerical software (RFPA2D).The permeability parameters of the coal seam floor are described given the relationship between permeability parameters.Strain and the water-inrush-indices were calculated.The water-inrush-index was 67.2% when the working face was pushed to 100 m, showing that water-inrush is possible and it was 1630% when the working face was pushed to 150 m, showing that water-inrush is quite probable.The results show that as long-wall mining is pushed along, the failure zone is enlarged, the strain increased, and fissures developed correspondingly, resulting in the formation of water-inrush channels.Accompanied by the failure of the strata, the permeability increased exponentially.In contrast, the non-Darcy flow β factor and the acceleration coefficient decreased exponentially, while the increase in the water-inrush-index was nearly exponential and the harmfulness of water-inrush in the coal mine increased accordingly.  相似文献   

4.
为分析承压水上采煤底板变形破坏规律,建立了承压水上采煤流固耦合数学模型,采用FLAC3D模拟软件分析之。运用正交试验的方式对底板变形破坏影响较大、易量化的4个因素进行分析;在此分析基础上得出单一因素对底板破坏的影响关系。分析结果表明:影响底板破坏深度大小的因素依次是工作面宽度、隔水层厚度、承压水压力和煤层埋深;随着隔水层厚度的增加,底板的破裂深度及范围有减小的趋势,同时在隔水层底部的原位张裂范围也在减小,甚至消失;在流固耦合模式下随着水压力的增加,岩体的破坏程度远远大于非耦合的情况。  相似文献   

5.
华北石炭二叠纪聚煤区是中国最重要的煤炭生产基地,区内众多煤矿皆受煤系底部奥陶系灰岩承压水威胁。针对当前煤矿巷道底板承压水突水评价方法存在的局限和不足,探索研究巷道底板承压水突水评价方法。现行评价方法岩梁法的理论计算前提主要包括:底板隔水层简化为两端固支梁;在岩梁弯矩最大处,底板隔水岩层承受的拉应力超过抗拉强度,岩层拉裂破坏;忽略孔隙水压力对岩石破坏的影响,计算隔水层厚度时抗拉强度取底板隔水层的平均值。事故数据及研究分析表明岩梁法计算假设存在不合理之处,与实际工况有较大偏差。基于对常见矩形巷道围岩应力分布特征的分析,结合巷道实际工况,摒弃底板隔水岩层弯拉破坏模式,提出隔水岩层剪切破坏模式,建立巷道底板承压水突水破坏岩柱模型;基于所建立的岩柱模型,利用极限平衡理论,综合考虑孔隙水压力对岩石破坏的影响,推导底板隔水层承受最大水压的计算评价方法。结果表明:最大水压与隔水层厚度、隔水层平均容重、抗剪强度参数、孔隙水压力系数和巷道宽度直接相关,最大水压与隔水层厚度呈指数函数关系。文中所提评价方法的计算结果与实测吻合,证明该方法合理有效。所提方法也能为地下工程其他专业领域类似的承压水突水问题研究提供借鉴。  相似文献   

6.
The mechanism of mine water inrushes in coal mines in China differs considerably from that in other countries. In China, most water inrushes occur from floor strata, where the water-inrush sources are karstic limestone aquifers. Our study describes the mechanism of mine water inrushes through a fault in the mine floor using principles of strata mechanics and the path of water inrush from an aquifer to the working face. A criterion to judge whether a ground water inrush will occur through a fault or not is also described, together with a case history of water inflow in the Feicheng coalfield, China.  相似文献   

7.
针对不等长工作面煤层开采日渐增多的现状,采用数值模拟与理论分析相结合的方法,对采场覆岩的破坏特征及支承压力的分布状态进行系统研究,并相应模拟出工作面前方应力场与位移场的演化规律。结果表明:工作面自开切眼开始向前推移,推进到工作面“见方”期或斜长的整数倍位置时,顶板活动剧烈,覆岩空间结构发生新旧更替,形成了“0”型破断区;不等长工作面推进过程中岩层运移极不规则,推进距离在衔接面前后20~30m的范围内,应力波动较大,数值变化明显;回采期间支承压力对覆岩活动产生了重要影响,其大小约为水平应力的1.5~2倍;就采动过程中竖向位移的变化而言,巷帮移近量远大于顶底板变形量,故工程实践中应特别注意对巷帮及顶板的加固和维护。  相似文献   

8.
Three test models and a simulation model were constructed based on the prevailing conditions of the Taiping coalmine in order to analyze pore pressure fluctuations of an overlying aquifer during residual coal mining. As well, the relation between pore pressure and soil stress was evaluated. The model tests show the vibrations of pore pressure and soil stress as a result of mining activities. The simulation model tells of the response characteristics of pore pressure after mining and its distribution in the sand aquifer. The comparative analysis reveals that pore pressure and soil stress vibration are activated by unexpected events occurring in mines, such as collapsing roofs. An increased pore pressure zone always lies above the wall in front or behind the working face of a mine. Both pore pressure and vertical stress result in increasing and decreasing processes during movements of the working face of a mine. The vibration of pore pressure always precedes soil stress in the same area and ends with a sharp decline. Changes in pore pressure of sand aquifer are limited to the area of stress changes. Obvious changes are largely located in a very small frame over the mining face.  相似文献   

9.
The problem of water preservation in mining and the prevention of water-bursts has been one of the more important issues in deep mining. Based on the concept of water-resisting key strata, the mechanics model of the key strata is established given the structural characteristics and the mechanical properties of the roof rock layers of the working face in a particular coal mine. Four other models were derived from this model by re-arranging the order of the layers in the key strata. The distribution characteristics of stress, deformation, pore pressure and the flow vector of all the models are computed using the analytical module of fluid-structure interaction in the FLAC software and the corre- sponding risks of a water-burst are analyzed. The results indicate that the water-insulating ability of the key strata is related to the arrangement of soft and hard rocks. The water-insulating ability of the compound water-resisting key strata (CWKS) with a hard-hard-soft-hard-soft compounding order is the best under the five given simulated conditions.  相似文献   

10.
Given the analysis of underground pressure, a stress calculation model of coal floor stress has been established based on a theory of elasticity. The model presents the law of stress distribution on the relatively fixed position of the mining coal floor: the extent of stress variation in a fixed floor position decreases gradually along with depth, the decreasing rate of the vertical stress is clearly larger than that of the horizontal stress at a specific depth. The direction of the maximum principal stress changes gradually from a vertical direction to a horizontal direction with the advance of the working face. The deformation and permeability of the rock mass of the coal floor are obtained by contrasting the difference of the principal stress established from theoretical calculations with curves of stress-strain and permeability-strain from tests, which is an important mechanical basis for preventing water inrush from confined aquifers.  相似文献   

11.
由于煤系地层距松散含水层的距离越来越近,松散层底部或潜在威胁的含水层对矿井安全生产的威胁程度也逐渐增加。通过现场钻探取芯、钻孔资料统计分析及土工试验的方法,分析并掌握了2301N工作面附近深厚松散层底部地层的垂向沉积结构特征、深埋粘土及砂土的岩性特征;通过深厚松散层"底含"赋存特征、富水性、水力联系的分析,并结合研究区域深埋粘土特殊的土体特性,综合分析认为2301N综放工作面可留设防砂煤岩柱,并且该区域深厚松散层底部的厚粘土层可作为安全煤岩柱的保护层。  相似文献   

12.
Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity, as well as the deformation characteristics of narrow coal pillar in gob-side entry driving, in the whole process from entry driving of last working face to the present working face mining. A new method of narrow coal pillar control based on the triune coupling support technique (TCST), which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side, and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side, and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone, is thereby generated and applied to the field production. The result indicates that after entry excavating along the gob under unstable overlying strata, the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability, and the large deformation of the pillar on the gob side is evident. Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process, the stress variation inside the coal pillar in other stages are rather steady, however, the stress expansion is obvious and the coal pillar continues to deform. Once the gob-side entry driving is completed, a global displacement zone on the entry side appears in the shallow part of the pillar, whereas, a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar. The application of TCST can not only avoid the failure of pillar supporting structure, but exert the supporting capacity of the bolting structure left in the pillar of last sublevel entry, thus to jointly maintain the stability of coal pillar.  相似文献   

13.
煤层开采过程中,在煤层顶、底板岩层一定的条件下,煤层的倾角和埋深对地表变形有很大的影响。通过三维有限元数值模拟,研究平缓或缓倾斜煤层、倾斜煤层、急倾斜煤层开采对上覆构筑物基础变形的影响,依据特定构筑物对倾斜变形、水平变形和基础沉降最大值的容许要求,提出安全煤柱(移动角γ、β)的保护范围,为构筑物安全运行和煤矿合理开采提供依据。  相似文献   

14.
Based on the decline in exploitation of coal resources, steep coal seam mining and mining face tensions continue to explore the feasibility analysis of steeply inclined faces in the gob. One of the key factors in utilizing the technology of gob-side entry retaining in steep coal seams is to safely and effectively prevent caving rock blocks from rushing into the gob-side entry by sliding downwards along levels. Using theoretical analysis and field methods, we numerically simulated the mining process on a fully-mechanized face in a steep coal seam. The stress and deformation process of roof strata has been analyzed, and the difficulty of utilizing the technology is considered and combined with practice in a steep working face in Lvshuidong mine. The feasibility of utilizing the technology of gob-side entry retaining in a steep coal seam has been recognised. We propose that roadways along the left lane offshoot body use a specially-made reinforced steel dense net to build a dense rock face at the lower head. The results show that the lane offshoot branch creates effective roof control, safe conditions for roadway construction workers, and practical application of steeply inclined gob.  相似文献   

15.
针对淮南煤田某矿412采区开采1煤时受承压水的威胁,从采区的水文地质与工程地质条件出发,建立数值计算模型,并利用FLAC数值分析软件对开采过程中煤层底板应力、破坏区及突涌水情况进行分析与评价,为安全开采提出相应建议.  相似文献   

16.
综采支架工作阻力的大小,直接决定着综采支架的架型和质量,关系到矿井的生产和安全,影响到矿井的经济效益和社会效益。运用国内外对支架阻力的计算方法,借助相似模拟试验,确定了金刚矿3115工作面综采支架工作阻力为2400 kN。现场使用效果表明:使用综合机械化开采经济效益和社会效益明显,不过在确定液压支架工作阻力时,应充分参考同一矿井与拟用综采工作面毗邻区采煤工作面的矿压观测结果,由此获得的工作阻力更加可靠合理,适当降低3115工作面综采支架工作阻力,仍可满足安全生产要求。  相似文献   

17.
In order to ensure safe mining and reduce surface damage in shallow multi-seam mining, the failure characteristics of interburden strata with different coal pillars offset distances between pillars in the upper and lower seams, the distribution characteristics of stress concentration in coal pillars, and the development characteristics of stratum cracks and subsidence were investigated by physical and UDEC2 D simulation. Meanwhile, the effect of different coal pillar offset distances on stress concentration of coal pillar and development of stratum cracks were studied. Based on those results, a formula for safe mining and reducing surface damage was established, which provided a theoretical basis for safe and environmentally friendly mining in shallow multi-seam. According to the results, the optimal coal pillar offset distance(the side to side horizontal distance of the upper and lower coal pillars) between the upper and lower coal seams was developed to reduce the stress concentration of coal pillars and surface damage.The results of this study have been applied in Ningtiaota coal mine and have achieved good results in safe and environmentally friendly mining.  相似文献   

18.
In this paper, a combination of field measurement, theoretical analysis and numerical simulation were used to study the main control factors of coal mine water inrush in a main aquifer coal seam and its control scheme. On the basis of revealing and analyzing the coal seam as the main aquifer in western coal mine of Xiao Jihan coal mine, the simulation software of PHASE-2D was applied to analyze the water inflow under different influencing factors. The results showed that water inflow increases logarithmically with the coal seam thickness, increases as a power function with the permeability coefficient of the coal seam, and increases linearly with the coal seam burial depth and the head pressure; The evaluation model for the factors of coal seam water inrush was gained by using nonlinear regression analysis with SPSS. The mine water inrush risk evaluation partition within the scope of the mining field was obtained,through the engineering application in Xiao Jihan coal mine. To ensure the safe and efficient production of the mine, we studied the coal mine water disaster prevention and control measures of a main aquifer coal seam in aspects of roadway driving and coal seam mining.  相似文献   

19.
Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion.  相似文献   

20.
It is important to emphasize the value of research in safe mining technology of high-risk water outburst coal seams. We describe briefly current conditions abroad and in China. Based on an Ordovician limestone aquifer with high-risk water outburst seams in the Feicheng coal field, we analyzed the water-resistant characteristics of a coal floor aquifuge and the behavior of water head intrusion of a confined aquifer and propose a safe criterion model and relevant technology of mining above aquifers. This has brought satisfactory results in engineering practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号