首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
GHP系统实现了能量的梯级利用,系统中的余热回收是实现低品位热能回收的主要措施,是提高系统一次能源利用率的有效途径,余热回收的效果影响着GHP系统的效率及经济性。因此,余热回收对于GHP系统有着比较重要的意义。余热回收系统的形式根据排烟余热回收换热器和发动机缸体余热回收换热器的连接形式可分为简单串联、简单并联、旁通串联。讨论了发动机余热回收系统的形式以及余热回收换热器的种类,并对此给出了建议。  相似文献   

2.
刘业奎  王黎  严文君  冯霄 《热能动力工程》2003,18(6):564-567,576
针对当前我国反应器余热资源过剩和热回收不完全的现状,在余热单级动力回收的基础上,提出余热的多级动力回收,并对多级动力回收系统以输出功率最大为目标函数进行优化,结果表明多级动力回收系统的余热回收效果明显优于单级回收系统。  相似文献   

3.
增设烟气余热回收系统是大型燃煤电站锅炉节能的有效途径.分析比较了4种典型锅炉尾部烟气余热回收系统,并结合某200MW机组参数,应用等效焓降理论及节能定量分析理论计算、比较了各种余热回收系统的经济性.分析结果表明,普通低压省煤器余热回收系统节能量最大,复合相变换热器余热回收系统性价比较高.  相似文献   

4.
余热回收是工业企业节能降碳的一项重要举措。围绕垃圾焚烧电站空气压缩机的余热回收利用,简述了空气压缩机的工作原理及热量组成,探讨了空气压缩机余热回收两种不同的应用路径,分析了回收系统设计及控制方式。计算表明,空气压缩机余热回收系统具有良好的经济效益,不仅可以为企业提供便利的热源,还可以节省相当可观的用电费用,同时为其他余热回收系统设计提供了思路。  相似文献   

5.
《节能》2019,(6):67-68
数据中心能耗大且耗能稳定,是优质的热源,利用制冷机组进行余热回收有着广阔的市场前景及节能意义。以北京某已运行的数据机房为例,对其余热回收方案进行分析。提出了4种余热回收方案:(1)多微通道蒸发换热器热回收系统;(2)在精密空调回风口处设置回收装置(表冷器);(3)在冷冻水侧设置余热回收系统;(4)在冷却水侧设置余热回收系统。同时,分析4种方案的优缺点。根据设计要求:保证原有数据机房安全运行,选定在冷却水侧设置余热回收系统,初步估算初投资。为运行的数据机房进行余热回收提供一种思路。  相似文献   

6.
李巍 《节能技术》2010,28(4):304-306
随着工业发展,能源的利用效率也不断得到关注。本文主要介绍了海上平台新增余热回收系统的选型计算方法,主要通过对主机尾气可回收热量的计算,根据计算结果及平台所需供热量对比进行余热回收系统的选型,通过计算结果可以更深入了解余热回收系统的效果,从而为判断海上平台改造中是否新增余热回收系统的方案评估提供参考。  相似文献   

7.
针对轨道交通装备制造企业的用能特点及制造工艺特点,重点调查冷却余热、烟气余热、回用水余热等流体余热的现状,提出了多源流体余热回收与利用的思想,即根据各种余热的特点设计智能化的余热回收控制策略,给出余热回收利用系统的总体方案与系统中几个关键技术的解决方案。  相似文献   

8.
余热回收和利用是钢铁企业节能减排的重要措施。分析了钢铁企业余热蒸汽回收利用系统的特点,研究表明,做好余热蒸汽的回收和科学利用可以使钢铁企业对一次能源的需求量减少约8%。余热蒸汽利用系统要根据“按质用能,温度对口,梯级利用,热和能尽其利用”的原则进行统一的规划。开发先进的余热蒸汽调控和利用技术,是目前余热蒸汽回收利用的关键,随着钢铁企业余热蒸汽回收量的增加,应该大力发展蒸汽制冷、余热蒸汽发电等技术。  相似文献   

9.
王军 《能源与节能》2023,(11):100-102
为解决当前煤矿空压机电能消耗过大且效率较低的问题,结合实际生产开展了空压机节能设计和余热回收系统设计方面的研究。空压机节能方面,通过重新选型空压机及采用变频节能启动达到目的;余热回收系统方面,通过配置不同型号的余热回收系统实现对热能的回收利用。最后验证了空压机节能改造和余热回收系统的实际应用效果。实践证明,设计取得了理想效果。  相似文献   

10.
文中以对螺杆式空压机余热回收系统的余热回收最大化及热量精确控制为目的,首先构建余热回收系统的热力学模型,建立热平衡方程式。并针对该余热回收系统大超调量、易振荡和低控制精度的特性,设计了模糊神经网络控制算法以提高系统的控制精度和稳定性。利用matlab的simulink平台对模糊神经网络控制算法进行计算机仿真,仿真结果完全满足控制要求,而且效果良好。  相似文献   

11.
Sludge gasification for the production of hydrogen-rich gas is a promising technology. In this paper, a pilot study on the hydrogen-rich gas production by sludge gasification using waste heat of blast furnace slag was carried out, and the mass and energy balance of gasification process using waste heat from blast furnace slag were evaluated. The results show that the higher the gasification temperature, the higher the hydrogen content in the gas. When the gasification temperature reaches 880 °C, the hydrogen content in the gas reaches the maximum,35.3%. The technology of sludge gasification combined with waste heat recovery of high furnace slag is feasible. Its efficiency of heat recovery can reach up to 64.35%, and the gasification efficiency and energy consumption ratio can reach to 42.30% and 3.67, respectively.  相似文献   

12.
Steam cracking is a fundamental application of olefin production which is the building block of petrochemical complex. Continuous efforts are being made to optimize the cracker performance by process-side optimization. The cracker furnace flue gas, which has a huge quantum of low-grade energy, is getting lost from the stack; a waste heat recovery system is being employed to generate ow-pressure steam. This also helps in the reduction of induced draft fan suction temperature. However, if there are no low-pressure steam consumers, the steam requires to be vented or partial heat recovery to be done. The lower heat recovery through waste heat recovery boiler restricts the cracking furnace throughput due to a higher suction temperature of the induced draft. A detailed steam network study has been done for a petrochemical complex having various downstream plants to maximize heat recovery as well as furnace throughput. For any equipment in question, to use a lower steam, it was a challenge to switch over from relatively higher-pressure steam to lower-pressure steam due to equipment design consideration as well as operating temperature requirement of any process. Different alternatives were thought of and evaluated based on process requirement, possibility of steam venting of other level steam, and cost of modifications. The outcome of this study has helped to utilize the low-pressure steam. The study indicated that for optimization of cracker performance, in addition to process side, there is a scope to improve on flue gas side operation also.  相似文献   

13.
对丙烯腈装置旧焚烧炉焚烧废水后产生的余热在能源利用方面存在不合理的地方进行了介绍,提出了通过增设一台卧式焚烧炉,利用导热油作为热载体,对废水焚烧后产生的余热进行回收利用的方案,对余热回收系统在运行过程中产生的导热油炉管腐蚀和炉管结垢的问题及原因进行了阐述,通过改变废水焚烧流程实现不同的废水分开焚烧的办法解决了炉管腐蚀的问题,在新焚烧炉增设吹灰器的办法解决了炉管结垢问题,达到了合理利用焚烧炉余热的目的。  相似文献   

14.
为提高能源利用效率,确保宝钢完成"十二五"节能目标,宝山钢铁股份有限公司冷轧厂率先对连续退火机组的烟气余热进行利用。叙述了机组原余热利用系统的工艺流程及其缺点以及机组余热利用控制系统的运行情况,提出,机组余热利用工艺系统的改造方案。  相似文献   

15.
Energy recovery from high temperature slags   总被引:1,自引:0,他引:1  
M. Barati  S. Esfahani  T.A. Utigard 《Energy》2011,36(9):5440-5449
Molten slags represent one of the largest untapped energy sources in metal manufacturing operations. The waste heat of slags amounting to ∼220 TWh/year at temperatures in the range of 1200–1600 °C, presents an opportunity to lower the energy intensity of metal production. Currently, three types of technologies are under development for utilizing the thermal energy of slags; recovery as hot air or steam, conversion to chemical energy as fuel, and thermoelectric power generation. The former route is most developed with its large scale trials demonstrating recovery efficiencies up to 65%. The latter two are emerging as the next generation methods of waste heat recovery. An evaluation of these methods shows that for both thermal and chemical energy recovery routes, a two-step process would yield a high efficiency with minimal technical risk. For thermoelectric power generation, the use of phase change materials appears to solve some of the current challenges including the mismatch between the slag temperature and operating range of thermoelectric materials.  相似文献   

16.
通过一定的设备系统将大量放散的具有一定品位的热能回收发电 ,是废热回收的高价值方法。而对于原本品位不高的低温废热 ,如何有效地提高其回收率 ,则是低温废热回收中值得研究的课题。本文介绍一种多次闪蒸—混汽发电的废热回收发电系统 ,并采用火用方法对其热经济性做出了评价。  相似文献   

17.
熔融盐具有液体温度范围宽,黏度低,流动性能好,蒸汽压小,对管路承压能力要求低,相对密度大,比热容高,蓄热能力强,成本较低等诸多优点,已成为一种公认的良好的中高温传热蓄热介质.本文对熔融盐显热蓄热技术原理和发展现状进行了简要概述,包括熔融盐的种类,熔融盐显热蓄热技术的原理,关键技术,研发现状及其在太阳能热发电和间歇性余热利用中的应用.认为开展高温熔融盐传热蓄热介质制备,热性能表征和熔融盐流动与传热性能研究,进而完善整个熔融盐蓄热系统,提高蓄热效率,降低管路腐蚀性,提高系统可靠性仍将是未来熔融盐蓄热技术的研究重点.  相似文献   

18.
我国工业余热回收利用技术综述   总被引:11,自引:2,他引:9  
连红奎  李艳  束光阳子  顾春伟 《节能技术》2011,29(2):123-128,133
节能减排主要依靠工业领域,工业余热利用是重要内容.本文从余热利用过程能量转换情况角度,概述了国内用于余热利用的热交换技术、热功转换余热发电技术及余热制冷制热技术及其设备的技术特点及应用概况,分析了工业余热利用中的存在的问题,认为需进一步推广余热锅妒及低温汽轮机余热发电技术,提高中高温余热的利用率,需要强化研究并掌握有机...  相似文献   

19.
陈翔 《工业加热》2014,(2):63-65
介绍了退火炉余热资源回收利用的现状,结合传统的退火炉烟气余热回收方法,提出了一种利用直流锅炉产生蒸汽回收烟气余热的新方法.项目改造后每年可为企业节省运行费用84万元,投资回收期为36天,为退火炉进行节能降耗改造提供了一种新方法以供参考和借鉴.  相似文献   

20.
The thermodynamic performance of an industrial waste heat recovery‐based trigeneration system is studied through energy and exergy efficiency parameters. The effects of exhaust gas inlet temperature, process heat pressure, and ambient temperature on both energy and exergy efficiencies, and electrical to thermal energy ratio of the system are investigated. The energy efficiency increases while electrical to thermal energy ratio and exergy efficiency decrease with increasing exhaust gas inlet temperature. On the other hand, with the increase in process heat pressure, energy efficiency decreases but exergy efficiency and electrical to thermal energy ratio increase. The effect of ambient temperature is also observed due to the fact that with an increase in ambient temperature, energy and exergy efficiencies, and electrical to thermal energy ratio decrease slightly. These results clearly show that performance evaluation of trigeneration system based on energy analysis is not adequate and hence more meaningful evaluation must include exergy analysis. The present analysis contributes to further information on the role of exhaust gas inlet temperature, process heat pressure, ambient temperature influence on the performance of waste heat recovery‐based trigeneration from a thermodynamic point of view. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号