首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Forest structure data derived from lidar is being used in forest science and management for inventory analysis, biomass estimation, and wildlife habitat analysis. Regression analysis dominated previous approaches to the derivation of tree stem and crown parameters from lidar. The regression model for tree parameters is locally applied based on vertical lidar point density, the tree species involved, and stand structure in the specific research area. The results of this approach, therefore, are location-specific, limiting its applicability to other areas. For a more widely applicable approach to derive tree parameters, we developed an innovative method called ‘wrapped surface reconstruction’ that employs radial basis functions and an isosurface. Utilizing computer graphics, we capture the exact shape of an irregular tree crown of various tree species based on the lidar point cloud and visualize their exact crown formation in three-dimensional space. To validate the tree parameters given by our wrapped surface approach, survey-grade equipment (a total station) was used to measure the crown shape. Four vantage points were established for each of 55 trees to capture whole-tree crown profiles georeferenced with post-processed differential GPS points. The observed tree profiles were linearly interpolated to estimate crown volume. These fieldwork-generated profiles were compared with the wrapped surface to assess goodness of fit. For coniferous trees, the following tree crown parameters derived by the wrapped surface method were highly correlated (< 0.05) with the total station-derived measurements: tree height (R2 = 0.95), crown width (R2 = 0.80), live crown base (R2 = 0.92), height of the lowest branch (R2 = 0.72), and crown volume (R2 = 0.84). For deciduous trees, wrapped surface-derived parameters of tree height (R2 = 0.96), crown width (R2 = 0.75), live crown base (R2 = 0.53), height of the lowest branch (R2 = 0.51), and crown volume (R2 = 0.89) were correlated with the total station-derived measurements. The wrapped surface technique is less susceptible to errors in estimation of tree parameters because of exact interpolation using the radial basis functions. The effect of diminished energy return causes the low correlation for lowest branches in deciduous trees (R2 = 0.51), even though leaf-off lidar data was used. The wrapped surface provides fast and automated detection of micro-scale tree parameters for specific applications in areas such as tree physiology, fire modeling, and forest inventory.  相似文献   

2.
Methods for using airborne laser scanning (also called airborne LIDAR) to retrieve forest parameters that are critical for fire behavior modeling are presented. A model for the automatic extraction of forest information is demonstrated to provide spatial coverage of the study area, making it possible to produce 3-D inputs to improve fire behavior models.The Toposys I airborne laser system recorded the last return of each footprint (0.30-0.38 m) over a 2000 m by 190 m flight line. Raw data were transformed into height above the surface, eliminating the effect of terrain on vegetation height and allowing separation of ground surface and crown heights. Data were defined as ground elevation if heights were less than 0.6 m. A cluster analysis was used to discriminate crown base height, allowing identification of both tree and understory canopy heights. Tree height was defined as the 99 percentile of the tree crown height group, while crown base height was the 1 percentile of the tree crown height group. Tree cover (TC) was estimated from the fraction of total tree laser hits relative to the total number of laser hits. Surface canopy (SC) height was computed as the 99 percentile of the surface canopy group. Surface canopy cover is equal to the fraction of total surface canopy hits relative to the total number of hits, once the canopy height profile (CHP) was corrected. Crown bulk density (CBD) was obtained from foliage biomass (FB) estimate and crown volume (CV), using an empirical equation for foliage biomass. Crown volume was estimated as the crown area times the crown height after a correction for mean canopy cover.  相似文献   

3.
Greenhouse gas inventories and emissions reduction programs require robust methods to quantify carbon sequestration in forests. We compare forest carbon estimates from Light Detection and Ranging (Lidar) data and QuickBird high-resolution satellite images, calibrated and validated by field measurements of individual trees. We conducted the tests at two sites in California: (1) 59 km2 of secondary and old-growth coast redwood (Sequoia sempervirens) forest (Garcia-Mailliard area) and (2) 58 km2 of old-growth Sierra Nevada forest (North Yuba area). Regression of aboveground live tree carbon density, calculated from field measurements, against Lidar height metrics and against QuickBird-derived tree crown diameter generated equations of carbon density as a function of the remote sensing parameters. Employing Monte Carlo methods, we quantified uncertainties of forest carbon estimates from uncertainties in field measurements, remote sensing accuracy, biomass regression equations, and spatial autocorrelation. Validation of QuickBird crown diameters against field measurements of the same trees showed significant correlation (r = 0.82, P < 0.05). Comparison of stand-level Lidar height metrics with field-derived Lorey's mean height showed significant correlation (Garcia-Mailliard r = 0.94, P < 0.0001; North Yuba R = 0.89, P < 0.0001). Field measurements of five aboveground carbon pools (live trees, dead trees, shrubs, coarse woody debris, and litter) yielded aboveground carbon densities (mean ± standard error without Monte Carlo) as high as 320 ± 35 Mg ha− 1 (old-growth coast redwood) and 510 ± 120 Mg ha− 1 (red fir [Abies magnifica] forest), as great or greater than tropical rainforest. Lidar and QuickBird detected aboveground carbon in live trees, 70-97% of the total. Large sample sizes in the Monte Carlo analyses of remote sensing data generated low estimates of uncertainty. Lidar showed lower uncertainty and higher accuracy than QuickBird, due to high correlation of biomass to height and undercounting of trees by the crown detection algorithm. Lidar achieved uncertainties of < 1%, providing estimates of aboveground live tree carbon density (mean ± 95% confidence interval with Monte Carlo) of 82 ± 0.7 Mg ha− 1 in Garcia-Mailliard and 140 ± 0.9 Mg ha− 1 in North Yuba. The method that we tested, combining field measurements, Lidar, and Monte Carlo, can produce robust wall-to-wall spatial data on forest carbon.  相似文献   

4.
The overall goal of this study was to develop methods for assessing crown base height for individual trees using airborne lidar data in forest settings typical for the southeastern United States. More specific objectives are to: (1) develop new lidar-derived features as multiband height bins and processing techniques for characterizing the vertical structure of individual tree crowns; (2) investigate several techniques for filtering and analyzing vertical profiles of individual trees to derive crown base height, such as Fourier and wavelet filtering, polynomial fit, and percentile analysis; (3) assess the accuracy of estimating crown base height for individual trees, and (4) investigate which type of lidar data, point frequency or intensity, provides the most accurate estimate of crown base height. A lidar software application, TreeVaW, was used to locate individual trees and to obtain per tree measurements of height and crown width. Tree locations were used with lidar height bins to derive the vertical structure of tree crowns and measurements of crown base height. Lidar-derived crown base heights of individual trees were compared to field observations for 117 trees, including 94 pines and 23 deciduous trees. Linear regression models were able to explain up to 80% of the variability associated with crown base height for individual trees. Fourier filtering used for smoothing the vertical crown profile consistently provided the best results when estimating crown base height.  相似文献   

5.
A ground-based, upward-scanning, near-infrared lidar, the Echidna® validation instrument (EVI), built by CSIRO Australia, retrieves forest stand structural parameters, including mean diameter at breast height (DBH), stem count density (stems/area), basal area, and above-ground woody biomass with very good accuracy in six New England hardwood and conifer forest stands. Comparing forest structural parameters retrieved using EVI data with extensive ground measurements, we found excellent agreement at the site level using five EVI scans (plots) per site (R2 = 0.94-0.99); very good agreement at the plot level for stem count density and biomass (R2 = 0.90-0.85); and good agreement at the plot level for mean DBH and basal area (R2 = 0.48-0.66). The observed variance at site and plot levels suggest that a sample area of at least 1 ha (104 m2) is required to estimate these parameters accurately at the stand level using either lidar-based or conventional methods. The algorithms and procedures used to retrieve these structural parameters are dependent on the unique ability of the Echidna® lidar to digitize the full waveform of the scattered lidar pulse as it returns to the instrument, which allows consistent separation of scattering by trunks and large branches from scattering by leaves. This successful application of ground-based lidar technology opens the door to rapid and accurate measurement of biomass and timber volume in areal sampling scenarios and as a calibration and validation tool for mapping biomass using airborne or spaceborne remotely sensed data.  相似文献   

6.
Structural and functional analyses of ecosystems benefit when high accuracy vegetation coverages can be derived over large areas. In this study, we utilize IKONOS, Landsat 7 ETM+, and airborne scanning light detection and ranging (lidar) to quantify coniferous forest and understory grass coverages in a ponderosa pine (Pinus ponderosa) dominated ecosystem in the Black Hills of South Dakota. Linear spectral mixture analyses of IKONOS and ETM+ data were used to isolate spectral endmembers (bare soil, understory grass, and tree/shade) and calculate their subpixel fractional coverages. We then compared these endmember cover estimates to similar cover estimates derived from lidar data and field measures. The IKONOS-derived tree/shade fraction was significantly correlated with the field-measured canopy effective leaf area index (LAIe) (r2=0.55, p<0.001) and with the lidar-derived estimate of tree occurrence (r2=0.79, p<0.001). The enhanced vegetation index (EVI) calculated from IKONOS imagery showed a negative correlation with the field measured tree canopy effective LAI and lidar tree cover response (r2=0.30, r=−0.55 and r2=0.41, r=−0.64, respectively; p<0.001) and further analyses indicate a strong linear relationship between EVI and the IKONOS-derived grass fraction (r2=0.99, p<0.001). We also found that using EVI resulted in better agreement with the subpixel vegetation fractions in this ecosystem than using normalized difference of vegetation index (NDVI). Coarsening the IKONOS data to 30 m resolution imagery revealed a stronger relationship with lidar tree measures (r2=0.77, p<0.001) than at 4 m resolution (r2=0.58, p<0.001). Unmixed tree/shade fractions derived from 30 m resolution ETM+ imagery also showed a significant correlation with the lidar data (r2=0.66, p<0.001). These results demonstrate the power of using high resolution lidar data to validate spectral unmixing results of satellite imagery, and indicate that IKONOS data and Landsat 7 ETM+ data both can serve to make the important distinction between tree/shade coverage and exposed understory grass coverage during peak summertime greenness in a ponderosa pine forest ecosystem.  相似文献   

7.
The use of airborne laser scanning systems (lidar) to describe forest structure has increased dramatically since height profiling experiments nearly 30 years ago. The analyses in most studies employ a suite of frequency-based metrics calculated from the lidar height data, which are systematically eliminated from a full model using stepwise multiple linear regression. The resulting models often include highly correlated predictors with little physical justification for model formulation. We propose a method to aggregate discrete lidar height and intensity measurements into larger footprints to create “pseudo-waves”. Specifically, the returns are first sorted into height bins, sliced into narrow discrete elements, and finally smoothed using a spline function. The resulting “pseudo-waves” have many of the same characteristics of traditional waveform lidar data. We compared our method to a traditional frequency-based method to estimate tree height, canopy structure, stem density, and stand biomass in coniferous and deciduous stands in northern Wisconsin (USA). We found that the pseudo-wave approach had strong correlations for nearly all tree measurements including height (cross validated adjusted R2 (R2cv) = 0.82, RMSEcv = 2.09 m), mean stem diameter (R2cv = 0.64, RMSEcv = 6.15 cm), total aboveground biomass (R2cv = 0.74, RMSEcv = 74.03 kg ha− 1), and canopy coverage (R2cv = 0.79, RMSEcv = 5%). Moreover, the type of wave (derived from height and intensity or from height alone) had little effect on model formulation and fit. When wave-based and frequency-based models were compared, fit and mean square error were comparable, leading us to conclude that the pseudo-wave approach is a viable alternative because it has 1) an increased breadth of available metrics; 2) the potential to establish new meaningful metrics that capture unique patterns within the waves; 3) the ability to explain metric selection based on the physical structure of forests; and 4) lower correlation among independent variables.  相似文献   

8.
9.
High-resolution digital canopy models derived from airborne lidar data have the ability to provide detailed information on the vertical structure of forests. However, compared to satellite data of similar spatial resolution and extent, the small footprint airborne lidar data required to produce such models remain expensive. In an effort to reduce these costs, the primary objective of this paper is to develop an airborne lidar sampling strategy to model full-scene forest canopy height from optical imagery, lidar transects and Geographic Object-Based Image Analysis (GEOBIA). To achieve this goal, this research focuses on (i) determining appropriate lidar transect features (i.e., location, direction and extent) from an optical scene, (ii) developing a mechanism to model forest canopy height for the full-scene based on a minimum number of lidar transects, and (iii) defining an optimal mean object size (MOS) to accurately model the canopy composition and height distribution. Results show that (i) the transect locations derived from our optimal lidar transect selection algorithm accurately capture the canopy height variability of the entire study area; (ii) our canopy height estimation models have similar performance in two lidar transect directions (i.e., north-south and west-east); (iii) a small lidar extent (17.6% of total size) can achieve similar canopy height estimation accuracies as those modeled from the full lidar scene; and (iv) different MOS can lead to distinctly different canopy height results. By comparing the best canopy height estimate with the full lidar canopy height data, we obtained average estimation errors of 6.0 m and 6.8 m for conifer and deciduous forests at the individual tree crown/small tree cluster level, and an area weighted combined error of 6.2 m, which is lower than the provincial forest inventory height class interval (i.e., ≈ 9.0 m).  相似文献   

10.
Identifying species of individual trees using airborne laser scanner   总被引:2,自引:0,他引:2  
Individual trees can be detected using high-density airborne laser scanner data. Also, variables characterizing the detected trees such as tree height, crown area, and crown base height can be measured. The Scandinavian boreal forest mainly consists of Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.), and deciduous trees. It is possible to separate coniferous from deciduous trees using near-infrared images, but pine and spruce give similar spectral signals. Airborne laser scanning, measuring structure and shape of tree crowns could be used for discriminating between spruce and pine. The aim of this study was to test classification of Scots pine versus Norway spruce on an individual tree level using features extracted from airborne laser scanning data. Field measurements were used for training and validation of the classification. The position of all trees on 12 rectangular plots (50×20 m2) were measured in field and tree species was recorded. The dominating species (>80%) was Norway spruce for six of the plots and Scots pine for six plots. The field-measured trees were automatically linked to the laser-measured trees. The laser-detected trees on each plot were classified into species classes using all laser-detected trees on the other plots as training data. The portion correctly classified trees on all plots was 95%. Crown base height estimations of individual trees were also evaluated (r=0.84). The classification results in this study demonstrate the ability to discriminate between pine and spruce using laser data. This method could be applied in an operational context. In the first step, a segmentation of individual tree crowns is performed using laser data. In the second step, tree species classification is performed based on the segments. Methods could be developed in the future that combine laser data with digital near-infrared photographs for classification with the three classes: Norway spruce, Scots pine, and deciduous trees.  相似文献   

11.
Estimating forest canopy fuel parameters using LIDAR data   总被引:1,自引:0,他引:1  
Fire researchers and resource managers are dependent upon accurate, spatially-explicit forest structure information to support the application of forest fire behavior models. In particular, reliable estimates of several critical forest canopy structure metrics, including canopy bulk density, canopy height, canopy fuel weight, and canopy base height, are required to accurately map the spatial distribution of canopy fuels and model fire behavior over the landscape. The use of airborne laser scanning (LIDAR), a high-resolution active remote sensing technology, provides for accurate and efficient measurement of three-dimensional forest structure over extensive areas. In this study, regression analysis was used to develop predictive models relating a variety of LIDAR-based metrics to the canopy fuel parameters estimated from inventory data collected at plots established within stands of varying condition within Capitol State Forest, in western Washington State. Strong relationships between LIDAR-derived metrics and field-based fuel estimates were found for all parameters [sqrt(crown fuel weight): R2=0.86; ln(crown bulk density): R2=0.84; canopy base height: R2=0.77; canopy height: R2=0.98]. A cross-validation procedure was used to assess the reliability of these models. LIDAR-based fuel prediction models can be used to develop maps of critical canopy fuel parameters over forest areas in the Pacific Northwest.  相似文献   

12.
Accurate estimation of live and dead biomass in forested ecosystems is important for studies of carbon dynamics, biodiversity, wildfire behavior, and for forest management. Lidar remote sensing has been used successfully to estimate live biomass, but studies focusing on dead biomass are rare. We used lidar data, in conjunction with field measurements from 58 plots to distinguish between and map standing live and dead tree biomass in the mixed coniferous forest of the North Rim of Grand Canyon National Park, USA. Lidar intensity and canopy volume were key variables for estimating live biomass, whereas for dead biomass, lidar intensity alone was critical for accurate estimation. Regression estimates of both live and dead biomass ranged between 0 and 600 Mg ha− 1, with means of 195.08 Mg ha− 1 and 65.73 Mg ha− 1, respectively. Cross validation with field data resulted in correlation coefficients for predicted vs. observed of 0.85 for live biomass (RMSE = 50 Mg ha− 1 and %RMSE (RMSE as a percent of the mean) = 26). For dead biomass, correlation was 0.79, RMSE was 42 Mg ha− 1, and %RMSE was 63. Biomass maps revealed interesting patterns of live and dead standing tree biomass. Live biomass was highest in the ponderosa pine zone, and decreased from south to north through the mixed conifer and spruce-fir forest zones. Dead biomass exhibited a background range of values in these mature forests from zero to 100 Mg ha− 1, with lower values in locations having higher live biomass. In areas with high dead biomass values, live biomass was near zero. These areas were associated with recent wildfires, as indicated by fire maps derived from the Monitoring Trends in Burn Severity Project (MTBS). Combining our dead biomass maps with the MTBS maps, we demonstrated the complementary power of these two datasets, revealing that MTBS burn intensity class can be described quantitatively in terms of dead biomass. Assuming a background range of dead biomass up to 100 Mg ha− 1, it is possible to estimate and map the contribution to the standing dead tree biomass pool associated with recent wildfire.  相似文献   

13.
Meso-scale digital terrain models (DTMs) and canopy-height estimates, or digital canopy models (DCMs), are two lidar products that have immense potential for research in tropical rain forest (TRF) ecology and management. In this study, we used a small-footprint lidar sensor (airborne laser scanner, ALS) to estimate sub-canopy elevation and canopy height in an evergreen tropical rain forest. A fully automated, local-minima algorithm was developed to separate lidar ground returns from overlying vegetation returns. We then assessed inverse distance weighted (IDW) and ordinary kriging (OK) geostatistical techniques for the interpolation of a sub-canopy DTM. OK was determined to be a superior interpolation scheme because it smoothed fine-scale variance created by spurious understory heights in the ground-point dataset. The final DTM had a linear correlation of 1.00 and a root-mean-square error (RMSE) of 2.29 m when compared against 3859 well-distributed ground-survey points. In old-growth forests, RMS error on steep slopes was 0.67 m greater than on flat slopes. On flatter slopes, variation in vegetation complexity associated with land use caused highly significant differences in DTM error distribution across the landscape. The highest DTM accuracy observed in this study was 0.58-m RMSE, under flat, open-canopy areas with relatively smooth surfaces. Lidar ground retrieval was complicated by dense, multi-layered evergreen canopy in old-growth forests, causing DTM overestimation that increased RMS error to 1.95 m.A DCM was calculated from the original lidar surface and the interpolated DTM. Individual and plot-scale heights were estimated from DCM metrics and compared to field data measured using similar spatial supports and metrics. For old-growth forest emergent trees and isolated pasture trees greater than 20 m tall, individual tree heights were underestimated and had 3.67- and 2.33-m mean absolute error (MAE), respectively. Linear-regression models explained 51% (4.15-m RMSE) and 95% (2.41-m RMSE) of the variance, respectively. It was determined that improved elevation and field-height estimation in pastures explained why individual pasture trees could be estimated more accurately than old-growth trees. Mean height of tree stems in 32 young agroforestry plantation plots (0.38 to 18.53 m tall) was estimated with a mean absolute error of 0.90 m (r2=0.97; 1.08-m model RMSE) using the mean of lidar returns in the plot. As in other small-footprint lidar studies, plot mean height was underestimated; however, our plot-scale results have stronger linear models for tropical, leaf-on hardwood trees than has been previously reported for temperate-zone conifer and deciduous hardwoods.  相似文献   

14.
The forest canopy is the medium for energy, mass, and momentum exchanges between the forest ecosystem and the atmosphere. Tree crown size is a critical aspect of canopy structure that significantly influences these biophysical processes in the canopy. Tree crown size is also strongly related to other canopy structural parameters, such as tree height, diameter at breast height and biomass. But information about tree crown sizes is difficult to obtain and rarely available from traditional forest inventory. The study objective was to test the hypothesis that a model previously developed for estimation of tree crown size can be generalized across sensors and sites. Our study sites include the Racoon Ecological Management Area in southeast Ohio, USA and the Duke Forest in North Carolina Piedmont, USA. We sampled a series of circular plots in the summers of 2005 and 2007. We derived average tree crown diameter (CD) for trees with diameter at breast height (DBH) greater than 6.4 cm (2.5 in) for each sampling plot. We developed statistical models using image spatial information from Ikonos and QuickBird images as the independent variable and CD for stands in Ohio as the dependent variable. The models provide an explanation of tree crown size for the hardwood stands comparable to other approaches (R2 = ∼ 0.5 and RMSE = 0.83 m). Moreover, the models that estimate tree crown size using the ratio of image variances at two spatial resolutions can be applied across sensors and sites, i.e. the statistical models developed with Ikonos images can be applied directly to estimate tree crown size with QuickBird image, and the statistical models developed in Ohio can be applied directly to estimate tree crown size with images in North Carolina. These results indicate that the model developed based on image variance ratio at two spatial resolutions can be used to take advantage of existing sampling plot data and images to estimate CD with more recent images, enhancing the efficiency of forest resources inventory and monitoring.  相似文献   

15.
Researchers in lidar (Light Detection And Ranging) strive to search for the most appropriate laser-based metrics as predictors in regression models for estimating forest structural variables. Many previously developed models are scale-dependent that need to be fitted and then applied both at the same scale or pixel size. The objective of this paper is to develop methods for scale-invariant estimation of forest biomass using lidar data. We proposed two scale-invariant models for biomass: a linear functional model and an equivalent nonlinear model that use lidar-derived canopy height distributions (CHD) and canopy height quantile functions (CHQ) as predictors, respectively. The two models are called functional regression models because the predictors CHD and CHQ are themselves functions or functional data. The model formulation was justified mathematically under moderate assumptions. We also created a fine-resolution biomass map by mapping individual tree component biomass in a temperate forest of eastern Texas with a lidar tree-delineation approach. The map was used as reference data to synthesize training and test datasets at multiple scales for validating the two scale-invariant models. Results suggest that the models can accurately predict biomass and yield consistent predictive performances across a variety of scales with an R2 ranging from 0.80 to 0.95 (RMSE: from 14. 3 Mg/ha to 33.7 Mg/ha) among all the fitted models. Results also show that a training data size of around 50 plots or less was enough to guarantee a good fitting of the linear functional model. Our findings demonstrate the effectiveness of CHD and CHQ as lidar metrics for estimating biomass as well as the capability of lidar for mapping biomass at a range of scales. The functional regression models of this study are useful for lidar-based forest inventory tasks where the analysis units vary in size and shape. They also hold promise for estimating other forest characteristics such as below-ground biomass, timber volume, crown fuel weight, and Leaf Area Index.  相似文献   

16.
Estimation of the amount of carbon stored in forests is a key challenge for understanding the global carbon cycle, one which remote sensing is expected to help address. However, carbon storage in moderate to high biomass forests is difficult to estimate with conventional optical or radar sensors. Lidar (light detection and ranging) instruments measure the vertical structure of forests and thus hold great promise for remotely sensing the quantity and spatial organization of forest biomass. In this study, we compare the relationships between lidar-measured canopy structure and coincident field measurements of forest stand structure at five locations in the Pacific Northwest of the U.S.A. with contrasting composition. Coefficient of determination values (r2) ranged between 41% and 96%. Correlations for two important variables, LAI (81%) and aboveground biomass (92%), were noteworthy, as was the fact that neither variable showed an asymptotic response.Of the 17 stand structure variables considered in this study, we were able to develop eight equations that were valid for all sites, including equations for two variables generally considered to be highly important (aboveground biomass and leaf area index). The other six equations that were valid for all sites were either related to height (which is most directly measured by lidar) or diameter at breast height (which should be closely related to height). Four additional equations (a total of 12) were applicable to all sites where either Douglas-fir (Pseudotsuga menziesii), western hemlock (Tsuga heterophylla) or Sitka spruce (Picea sitchensi) were dominant. Stand structure variables in sites dominated by true firs (Abies sp.) or ponderosa pine (Pinus ponderosa) had biases when predicted by these four additional equations. Productivity-related variables describing the edaphic, climatic and topographic environment of the sites where available for every regression, but only two of the 17 equations (maximum diameter at breast height, stem density) incorporated them. Given the wide range of these environmental conditions sampled, we conclude that the prediction of stand structure is largely independent of environmental conditions in this study area.Most studies of lidar remote sensing for predicting stand structure have depended on intensive data collections within a relatively small study area. This study indicates that the relationships between many stand structure indices and lidar measured canopy structure have generality at the regional scale. This finding, if replicated in other regions, would suggest that mapping of stand structure using lidar may be accomplished by distributing field sites extensively over a region, thus reducing the overall inventory effort required.  相似文献   

17.
The retrieval of tree and forest structural attributes from Light Detection and Ranging (LiDAR) data has focused largely on utilising canopy height models, but these have proved only partially useful for mapping and attributing stems in complex, multi-layered forests. As a complementary approach, this paper presents a new index, termed the Height-Scaled Crown Openness Index (HSCOI), which provides a quantitative measure of the relative penetration of LiDAR pulses into the canopy. The HSCOI was developed from small footprint discrete return LiDAR data acquired over mixed species woodlands and open forests near Injune, Queensland, Australia, and allowed individual trees to be located (including those in the sub-canopy) and attributed with height using relationships (r2 = 0.81, RMSE = 1.85 m, n = 115; 4 outliers removed) established with field data. A threshold contour of the HSCOI surface that encompassed ∼ 90% of LiDAR vegetation returns also facilitated mapping of forest areas, delineation of tree crowns and clusters, and estimation of canopy cover. At a stand level, tree density compared well with field measurements (r2 = 0.82, RMSE = 133 stems ha− 1, n = 30), with the most consistent results observed for stem densities ≤ 700 stems ha− 1. By combining information extracted from both the HSCOI and the canopy height model, predominant stem height (r2 = 0.91, RMSE = 0.77 m, n = 30), crown cover (r2 = 0.78, RMSE = 9.25%, n = 30), and Foliage & Branch Projective Cover (FBPC; r2 = 0.89, RMSE = 5.49%, n = 30) were estimated to levels sufficient for inventory of woodland and open forest structural types. When the approach was applied to forests in north east Victoria, stem density and crown cover were reliably estimated for forests with a structure similar to those observed in Queensland, but less so for forests of greater height and canopy closure.  相似文献   

18.
Many areas of forest across northern Canada are challenging to monitor on a regular basis as a result of their large extent and remoteness. Although no forest inventory data typically exist for these northern areas, detailed and timely forest information for these areas is required to support national and international reporting obligations. We developed and tested a sample-based approach that could be used to estimate forest stand height in these remote forests using panchromatic Very High Spatial Resolution (VHSR, < 1 m) optical imagery and light detection and ranging (lidar) data. Using a study area in central British Columbia, Canada, to test our approach, we compared four different methods for estimating stand height using stand-level and crown-level metrics generated from the VHSR imagery. ‘Lidar plots’ (voxel-based samples of lidar data) are used for calibration and validation of the VHSR-based stand height estimates, similar to the way that field plots are used to calibrate photogrammetric estimates of stand height in a conventional forest inventory or to make empirical attribute estimates from multispectral digital remotely sensed data. A k-nearest neighbours (k-NN) method provided the best estimate of mean stand height (R 2 = 0.69; RMSE = 2.3 m, RMSE normalized by the mean value of the estimates (RMSE-%) = 21) compared with linear regression, random forests, and regression tree methods. The approach presented herein demonstrates the potential of VHSR panchromatic imagery and lidar to provide robust and representative estimates of stand height in remote forest areas where conventional forest inventory approaches are either too costly or are not logistically feasible. While further evaluation of the methods is required to generalize these results over Canada to provide robust and representative estimation, VHSR and lidar data provide an opportunity for monitoring in areas for which there is no detailed forest inventory information available.  相似文献   

19.
Riparian forest zones adjacent to surface water such as streams, lakes, reservoirs and wetlands maintain significant forest ecosystem functions including nutrient cycling, vegetative communities, water quality, fish and wildlife habitat and landscape aesthetics. In order to support the sustainable management of riparian forests, riparian zones should first be carefully delineated and then structural properties of riparian vegetation, especially forest trees, should be accurately measured. Geographical information system (GIS) techniques have been previously implemented to determine riparian zones quickly and reliably. However, basic measurements of forest structures in riparian areas have relied heavily on field-based surveys, which can be extremely time consuming in large areas. In this study, riparian forest zones were initially located using GIS techniques and then airborne lidar (light detection and ranging) data were used to determine and analyse structural properties (i.e. tree height, crown diameter, canopy closure and vegetation density) of a sample riparian forest. Lidar-derived tree height and crown diameter measurements of sample trees were compared with field-based measurements. Results indicated that 77.92% of the riparian area in the study area was covered by forest. Based on lidar-derived data, the average tree height, total crown width, canopy closure (above 3 m) and vegetation density (3–15 m) were found to be 74.72 m, 16.82 m, 71.15% and 26.05%, respectively. Although we found differences between measurement methods, lidar-derived riparian tree measurements were highly correlated with field measurements for tree height (R 2?=?88%) and crown width (R 2?=?92%). Differences between measurement methods were likely a result of difficulties associated with field measurements in the dense vegetation that is often associated with forested riparian areas.  相似文献   

20.
Aboveground forest biomass and carbon estimation at landscape scale is crucial for implementation of REDD+ programmes. This study aims to upscale the forest carbon estimates using GeoEye-1 image and small footprint lidar data from small areas to a landscape level using RapidEye image. Species stratification was carried out based on the spectral separability curve of GeoEye-1 image, and comparison of mean intensity and mean plot height of the trees from lidar data. GeoEye-1 image and lidar data were segmented using region growing approach to delineate individual tree crowns; and the segmented crowns (CPA) of tree were further used to establish a relationship with field measured carbon and total trees’ height. Carbon stock measured from field, individual tree crown (ITC) segmentation approach and area-based approach (ABA) was compared at plot level using one-way ANOVA and post hoc Tukey comparison test. ITC-based carbon estimates was used to establish a relationship with spectral reflectance of RapidEye image variables (NDVI, RedEdge NDVI, PC1, single band of RedEdge, and NIR) to upscale the carbon at landscape level. One-way ANOVA resulted in a highly significant difference (p-value < 0.005) between the mean plot height and lidar intensity to stratify Shorea robusta and Other species successfully. ITC carbon stock estimation models of two major tree species explained about 88% and 79% of the variances, respectively, at 95% confidence level. The ABA estimated carbon was highly correlated (R2 = 0.83, RMSE = 20.04) to field measured carbon with higher accuracy than the ITC estimated carbon. A weak relationship was observed between the carbon stock and the RapidEye image variables. However, upscaling of carbon estimates from ABA is likely to improve the relationship of the RapidEye variables rather than upscaling the carbon estimates from ITC approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号