首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Current methods to assess soil moisture extremes rely primarily on point-based in situ meteorological stations which typically provide precipitation and temperature rather than direct measurements of soil moisture. Microwave remote sensing offers the possibility of quantifying surface soil moisture conditions over large spatial extents. Capturing soil moisture anomalies normally requires a long temporal record of data, which most operating satellites do not have. This research examines the use of surface soil moisture from the AMSR-E passive microwave satellite to derive surface soil moisture anomalies by exploiting spatial resolution to compensate for the shorter temporal record of the satellite sensor. Four methods were used to spatially aggregate information to develop a surface soil moisture anomaly (SMA). Two of these methods used soil survey and climatological zones to define regions of homogeneity, based on the Soil Landscapes of Canada (SLC) and the EcoDistrict nested hierarchy. The second two methods (ObShp3 and ObShp5) used zones defined by a data driven segmentation of the satellite soil moisture data. The level of sensitivity of the calculated SMA decreased as the number of pixels used in the spatial aggregation increased, with the average error reducing to less than 5% when more than 15 pixels are used. All methods of spatial aggregation showed somewhat weak but consistent relationship to in situ soil moisture anomalies and meteorological drought indices. The size of the regions used for aggregation was more important than the method used to create the regions. Based on the error and the relationship to the in situ and ancillary data sets, the EcoDistrict or ObShp3 scale appears to provide the lowest error in calculating the SMA baseline. This research demonstrates that the use of spatial aggregation can provide useful information on soil moisture anomalies where satellite records of data are temporally short.  相似文献   

2.
Vegetation phenology characterizes seasonal life-cycle events that influence the carbon cycle and land-atmosphere water and energy exchange. We analyzed global phenology cycles over a six year record (2003-2008) using satellite passive microwave remote sensing based Vegetation Optical Depth (VOD) retrievals derived from daily time series brightness temperature (Tb) measurements from the Advanced Microwave Scanning Radiometer on EOS (AMSR-E) and other ancillary data inputs. The VOD parameter derives vegetation canopy attenuation at a given microwave frequency (18.7 GHz) and varies with canopy height, density, structure and water content. An error sensitivity analysis indicates that the retrieval algorithm can resolve the VOD seasonal cycle over a majority of global vegetated land areas. The VOD results corresponded favorably (p < 0.01) with vegetation indices (VIs) and leaf area index (LAI) information from satellite optical-infrared (MODIS) remote sensing, and phenology cycles determined from a simple bioclimatic growing season index (GSI) for over 82% of the global domain. Lower biomass land cover classes (e.g. savannas) show the highest correlations (R = 0.66), with reduced correspondence at higher biomass levels (0.03 < R < 0.51) and higher correlations for homogeneous land cover areas (0.41 < R < 0.83). The VOD results display a unique end-of-season signal relative to VI and LAI series, and may reflect microwave sensitivity to the timing of vegetation biomass depletion (e.g. leaf abscission) and associated changes in canopy water content (e.g. dormancy preparation). The VOD parameter is independent of and synergistic with optical-infrared remote sensing based vegetation metrics, and contributes to a more comprehensive view of land surface phenology.  相似文献   

3.
Water and energy fluxes at the interface between the land surface and atmosphere are strongly depending on the surface soil moisture content which is highly variable in space and time. The sensitivity of active and passive microwave remote sensing data to surface soil moisture content has been investigated in numerous studies. Recent satellite borne mission concepts, as e.g. the SMOS mission, are dedicated to provide global soil moisture information with a temporal frequency of 1-3 days to capture it's high temporal dynamics. Passive satellite microwave sensors have spatial resolutions in the order of tens of kilometres. The retrieved soil moisture fields from that sensors therefore represent surface information which is integrated over large areas. It has been shown that the heterogeneity within an image pixel might have considerable impact on the accuracy of soil moisture retrievals from passive microwave data.The paper investigates the impact of land surface heterogeneity on soil moisture retrievals from L-band passive microwave data at different spatial scales between 1 km and 40 km. The impact of sensor noise and quality of ancillary information is explicitly considered. A synthetic study is conducted where brightness temperature observations are generated using simulated land surface conditions. Soil moisture information is retrieved from these simulated observations using an iterative approach based on multiangular observations of brightness temperature. The soil moisture retrieval uncertainties resulting from the heterogeneity within the image pixels as well as the uncertainties in the a priori knowledge of surface temperature data and due to sensor noise, is investigated at different spatial scales. The investigations are made for a heterogeneous hydrological catchment in Southern Germany (Upper Danube) which is dedicated to serve as a calibration and validation site for the SMOS mission.  相似文献   

4.
A multi-sensor/multi-platform approach to water and energy cycle prediction is demonstrated in an effort to understand the variability and feedback of land surface and atmospheric processes over large space and time scales. Remote sensing-based variables including soil moisture (from AMSR-E), surface heat fluxes (from MODIS) and precipitation rates (from TRMM) are combined with North American Regional Reanalysis derived atmospheric components to examine the degree of hydrological consistency throughout these diverse and independent hydrologic data sets. The study focuses on the influence of the North American Monsoon System (NAMS) over the southwestern United States, and is timed to coincide with the SMEX04 North American Monsoon Experiment (NAME). The study is focused over the Arizona portion of the NAME domain to assist in better characterizing the hydrometeorological processes occurring across Arizona during the summer monsoon period. Results demonstrate that this multi-sensor approach, in combination with available atmospheric observations, can be used to obtain a comprehensive and hydrometeorologically consistent characterization of the land surface water cycle, leading to an improved understanding of water and energy cycles within the NAME region and providing a novel framework for future remote observation and analysis of the coupled land surface-atmosphere system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号