首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Spatial variability of L-band (21?cm wavelength) microwave brightness temperature over a corn field, caused by spatial heterogeneity of soil hydraulic properties, is simulated by combining physically based models for microwave emission and for dynamics of soil water. The scaling theory is used for the spatial variability of soil hydraulic parameters, the scaling parameter being represented by a histogram corresponding to a log-normal frequency distribution. The mean and the standard deviation of brightness temperatures over a corn field are calculated as a saturated soil dries progressively under clear-sky conditions. Results are presented for two values for the coefficient of variation (CV)of the scaling parameter, namely 0·45 and 0·65, which encompass the range of a few available field observations. For CV=0·45, the mean brightness temperatures are higher and the standard deviations are lower by about 2 deg K compared with those for CV = 0·65. Results of the present simulation suggest that spatial variability of hydraulic parameters might not be an important consideration for interpreting mean brightness temperatures over reasonably large (a few hectares or larger)vegetated fields, although some information about the frequency distribution of hydraulic parameters would be needed in interpreting the standard deviation of the brightness temperature.  相似文献   

2.
Soil moisture mapping and AMSR-E validation using the PSR in SMEX02   总被引:5,自引:0,他引:5  
Field experiments (SMEX02) were conducted to evaluate the effects of dense agricultural crop conditions on soil moisture retrieval using passive microwave remote sensing. Aircraft observations were collected using a new version of the Polarimetric Scanning Radiometer (PSR) that provided four C band and four X band frequencies. Observations were also available from the Aqua satellite Advanced Microwave Scanning Radiometer (AMSR-E) at these same frequencies. SMEX02 was conducted over a three-week period during the summer near Ames, Iowa. Corn and soybeans dominate the region. During the study period the corn was approaching its peak water content state and the soybeans were at the mid point of the growth cycle. Aircraft observations are compared to ground observations. Subsequently models are developed to describe the effects of corn and soybeans on soil moisture retrieval. Multiple altitude aircraft brightness temperatures were compared to AMSR-E observations to understand brightness temperature scaling and provide validation. The X-band observations from the two sensors were in reasonable agreement. The AMSR-E C-band observations were contaminated with anthropogenic RFI, which made comparison to the PSR invalid. Aircraft data along with ancillary data were used in a retrieval algorithm to map soil moisture. The PSR estimated soil moisture retrievals on a field-by-field comparison had a standard error of estimate (SEE) of 5.5%. The error reduced when high altitude soil moisture estimates were aggregated to 25 km resolution (same as AMSR-E EASE grid product resolution) (SEE ∼ 2.85%). These soil moisture products provide a validation of the AMSR retrievals. PSR/CX soil moisture images show spatial and temporal patterns consistent with meteorological and soil conditions. The dynamic range of the PSR/CX observations indicates that reasonable soil moisture estimates can be obtained from AMSR, even in areas of high vegetation biomass content (∼ 4-8 kg/m2).  相似文献   

3.
Due to large footprints of remotely sensed microwave brightness temperatures, accuracy of microwave observations in areas of large surface heterogeneity has always been a technological challenge. Microwave observations in areas dominated by waterbodies typically exhibit observed brightness temperature several tens of kelvins lower than areas having no surface water. The non-linearity between brightness temperature and other geophysical quantities such as soil moisture makes the accuracy of microwave observations a critical element for accurate estimation of these quantities. In retrieving soil moisture estimates, an error of 1 K in remotely sensed microwave brightness temperatures results in about 0.5–1% error in volumetric soil moisture. Large uncertainties in the observed brightness temperatures make such observations unusable in areas of large brightness temperature contrast. In this article, we discuss a deconvolution method to improve accuracy using the overlap in the adjacent microwave observations. We have shown that the method results in improved accuracy of 40% in brightness temperature estimation in regions of high brightness temperature contrast.  相似文献   

4.
Water and energy fluxes at the interface between the land surface and atmosphere are strongly depending on the surface soil moisture content which is highly variable in space and time. The sensitivity of active and passive microwave remote sensing data to surface soil moisture content has been investigated in numerous studies. Recent satellite borne mission concepts, as e.g. the SMOS mission, are dedicated to provide global soil moisture information with a temporal frequency of 1-3 days to capture it's high temporal dynamics. Passive satellite microwave sensors have spatial resolutions in the order of tens of kilometres. The retrieved soil moisture fields from that sensors therefore represent surface information which is integrated over large areas. It has been shown that the heterogeneity within an image pixel might have considerable impact on the accuracy of soil moisture retrievals from passive microwave data.The paper investigates the impact of land surface heterogeneity on soil moisture retrievals from L-band passive microwave data at different spatial scales between 1 km and 40 km. The impact of sensor noise and quality of ancillary information is explicitly considered. A synthetic study is conducted where brightness temperature observations are generated using simulated land surface conditions. Soil moisture information is retrieved from these simulated observations using an iterative approach based on multiangular observations of brightness temperature. The soil moisture retrieval uncertainties resulting from the heterogeneity within the image pixels as well as the uncertainties in the a priori knowledge of surface temperature data and due to sensor noise, is investigated at different spatial scales. The investigations are made for a heterogeneous hydrological catchment in Southern Germany (Upper Danube) which is dedicated to serve as a calibration and validation site for the SMOS mission.  相似文献   

5.
The Soil Moisture Experiments in 2002 (SMEX02) were conducted in Iowa between June 25th and July 12th, 2002. A major aim of the experiments was examination of existing algorithms for soil moisture retrieval from active and passive microwave remote sensors under high vegetation water content conditions. The data obtained from the passive and active L and S band sensor (PALS) along with physical variables measured by in situ sampling have been used in this study to demonstrate the sensitivity of the instrument to soil moisture and perform soil moisture retrieval using statistical regression and physical modeling techniques. The land cover conditions in the region studied were predominantly soybean and corn crops with average vegetation water contents ranging from 0 to ∼5 kg/m2. The PALS microwave sensitivity to soil moisture under these vegetation conditions was investigated for both passive and active measurements. The performance of the PALS instrument and retrieval algorithms has been analyzed, indicating soil moisture retrieval errors of approximately 0.04 g/g gravimetric soil moisture. Statistical regression techniques have been shown to perform satisfactorily with soil moisture retrieval error of around 0.05 g/g gravimetric soil moisture. The retrieval errors were higher for the corn than for the soybean fields due to the higher vegetation water content of the corn crops. However, the algorithms performed satisfactorily over the full range of vegetation conditions.  相似文献   

6.
A new methodology to derive the spatial distribution of clay pans from satellite microwave data is presented. Soil moisture has a different temporal signature in clay pans compared with other soils, which is directly reflected in the satellite-observed brightness temperatures. Three years of Advanced Microwave Scanning Radiometer Earth Observing System (AMSR-E) 6.9 GHz microwave observations were compiled and analysed over continental Australia to identify clay pans. This led to the development of a brightness temperature variance index (BTVI), which shows a strong spatial correspondence to an existing soil texture map and the ability to map clay pans for semi-arid regions. This simple method emphasizes the potential use of passive microwave remote sensing for soil type mapping.  相似文献   

7.
LANDSAT Multispectral Scanner (MSS) data covering a three-county area in northern Illinois were classified using computer-aided techniques as corn, soybeans, or “other.” Recognition of test fields was 80% accurate. County estimates of the area of corn and soybeans agreed closely with those made by the USDA. Results of the use of a priori information in classification, techniques to produce unbiased area estimates, and the use of temporal and spatial features for classification are discussed. The extendability, variability, and size of training sets, wavelength band selection, and spectral characteristics of crops were also investigated.  相似文献   

8.
The Soil Moisture Active Passive Validation Experiment 2012 was conducted as a pre-launch validation campaign for the Soil Moisture Active Passive mission over 6 weeks in June and July 2012. During this campaign, the Passive Active L-Band System (PALS) was flown at a low altitude, providing radar and radiometer measurements that were contained within a single agricultural field. The campaign domain consisted of 55 agricultural fields, where soil moisture was measured coincident to the PALS flight times and measurements of vegetation volumetric water content (VWC) and leaf area index (LAI) were measured weekly. The low-altitude flights allowed for the comparison between measured VWC and LAI for 11 fields to radar parameters derived from the radar backscatter. Only the correlation between the HV backscatter and the soybean VWC was considered strong (|r| > 0.7). All other correlations between the radar parameters and the VWC (or LAI) were moderate (0.3 < |r| < 0.7) or weak (|r|< 0.3). The established relationships between radar parameters and VWC were used in a forward radiation transfer model to estimate H-pol brightness temperature. It was found that the RMSE between the brightness temperatures estimated using the measured VWC was lowest when using the relationship between VWC and LAI (3.9 K for soybeans, 6.8 K for spring wheat, and 9.3 K when all crop data are combined). Despite a lower correlation, the RMSE associated with using the radar vegetation index relationship with VWC was less than when HV was used (7.9 K) for soybeans, which would result in an error in soil moisture estimation of just over 4%. The RMSEs for all other VWC and radar parameter relationships were greater than 10 K.  相似文献   

9.
Optimal deconvolution (ODC) utilizes the footprint overlap in microwave observations to estimate the earth's brightness temperatures (TB). This paper examines the accuracy of ODC-estimated TB compared with a standard averaging technique. Because brightness temperatures cannot be independently verified, we constructed synthetic True TB for accuracy assessment. We assigned TB at a high spatial resolution (1 km) grid and computed the True TB by spatial averaging of the assigned TB to a lower resolution earth grid (25 km), selected to match the resolution of products generated from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). We used the sensor antenna response function along with the 1-km assigned TB to generate synthetic observations at AMSR-E footprint locations. These synthetic observations were subsequently deconvolved in the ODC technique to estimate TB at the lower resolution earth grid. The ODC-estimated TB and the simple grid cell averages of the synthetic observations were compared with the True TB allowing us to quantify the efficacy of each technique. In areas of high TB contrast (such as boundaries of water bodies), ODC performed significantly better than averaging. In other areas, ODC and averaging techniques produced similar results. A technique similar to ODC can be effective in delineating water bodies with significant clarity. That will allow microwave observations to be utilized near the shorelines, a trouble spot for the currently used averaging techniques.  相似文献   

10.
In this study we present a methodology for monitoring drought conditions directly from microwave brightness temperature observations. Tropical Rainfall Measurement Mission (TRMM)/TRMM Microwave Imager (TMI) 10.7 GHz brightness temperatures were analysed along with TRMM merged rainfall products during June–August for 4 years to depict the spatial and temporal extent of dry and wet soil conditions. Comparison of brightness temperature anomalies with rainfall anomalies clearly shows the contrasting features of drought year 2002 and normal monsoon year 2001.  相似文献   

11.
Arctic sea ice undergoes a very strong annual cycle. This study sets out to look at the transition when the Arctic sea ice starts to melt using satellite-obtained passive microwave brightness temperatures and satellite-derived albedo data for 13 points within the Arctic, including both first-year and multiyear ice locations, for 1995–2000. Special sensor microwave imager (SSM/I) brightness temperature differences are used to determine melt onset dates once surface temperatures approach freezing. Independently, satellite-derived albedo data are obtained and a melt onset date is derived. Generally, the two methods produce the same date for melt onset with optimum conditions. However, in most cases there are clouds present, which for the albedo data restrict observations and generate melt dates that are several days later than the passive microwave melt onset which is not affected by cloud cover. Melt onset dates, determined from the passive microwave brightness temperatures, are compared to those from the albedo observation to determine differences between the two methods. For first-year ice (FYI) locations, the average differences in melt onset dates for the study locations between the passive microwave and albedo-derived methods are +/?3 days. The average difference for multiyear ice (MYI) locations melt onset dates is around 8 days, slightly longer than the (FYI) locations, however, this is due to more cloudy conditions. The results indicate that the passive microwave-derived melt onset dates and albedo-derived dates are very close and either method could be used to determine melt. The advantage of using microwave data would be the independence of having to have cloud free conditions.  相似文献   

12.
A representative subset of a stratified random sample of LACIE (Large Area Crop Inventory Experiment) segments which are 5 nmi x6 nmi in size were ground truthed and were used to derive field size, length, and width distributions for winter wheat, spring wheat, corn, soybeans, water, and “all crops” for areas in nine states in the U. S. Great Plains and one state in the Corn Belt. Field sizes for spring wheat and soybeans appeared log-normally distributed whereas the other crops and “all crops” did not fit the log-normal distribution well. The modal field size was near 10 acres for most crops studied. Winter wheat, spring wheat, and corn were found to have field width modes near 90 m and soybeans had a mode at 200 m. About 25% of all fields were found to be more narrow than 100 m. Field length modes were found at 400, 800, and 1600 m (I mi) due to the section line road system in the agricultural midwest and the homesteading of 160-acre farms (800 m x 800 m). Based on these field size distributions and a simple theoretical model it was estimated that fields of corn, soybeans, winter wheat, and spring wheat have Landsat MSS pixels which are on the average 40% pure (i.e., 40% of all pixels contain a single generic class), and that this will increase to 75% at the thematic mapper resolution.  相似文献   

13.
A series of validation studies for a recently developed soil moisture and optical depth retrieval algorithm is presented. The approach is largely theoretical, and uses a non-linear iterative optimization procedure to solve a simple radiative transfer equation for the two parameters from dual polarization satellite microwave brightness temperatures. The satellite retrievals were derived from night-time 6.6?GHz Nimbus Scanning Multichannel Microwave Radiometer (SMMR) observations, and were compared to soil moisture data sets from the USA, Mongolia, Turkmenistan and Russia. The surface temperature, which is also an unknown parameter in the model, is derived off-line from 37?GHz vertical polarized brightness temperatures. The new theoretical approach is independent of field observations of soil moisture or canopy biophysical measurements and can be used at any wavelength in the microwave region. The soil moisture retrievals compared well with the surface moisture observations from the various locations. The vegetation optical depth also compared well to time series of Normalized Difference Vegetation Index (NDVI) and showed similar seasonal patterns. From a global perspective, the satellite-derived surface soil moisture was consistent with expected spatial patterns, identifying both known dry areas such as deserts and semi-arid areas and moist agricultural areas very well. Spatial patterns of vegetation optical depth were found to be in agreement with NDVI. The methodology described in this study should be directly transferable to the Advanced Microwave Scanning Radiometer (AMSR) on the recently launched AQUA satellite.  相似文献   

14.
Land surface characteristics: soil and vegetation and rainfall inputs are distributed in nature. Representation of land surface characteristics and inputs in models is lumped at spatial scales corresponding to the grid size or observation density. Complete distributed representation of these characteristics or inputs is infeasible due to excessive computational costs or costs associated with maintaining dense observational networks. The measurements of microwave brightness temperatures by the SSM/I (Special Sensor Microwave Imager) are at resolutions of the order of 56km 56km for 19 GHz and 33 km 33 km for 37 GHz. At these resolutions, soil moisture and vegetation are not homogeneous over the measurement area. The experiments carried out in this study determine the effect of heterogeneities in vegetation (leaf area index) and input rainfall on simulated soil moisture and brightness temperatures and the inversion of brightness temperatures to obtain soil moisture estimates. This study would help us to understand the implications of using the SSM/I microwave brightness temperatures for soil moisture estimation. The consequences of treating rainfall inputs and vegetation over large land surface areas in a lumped fashion is examined. Simpler methods based on dividing the leaf area index or input rainfall into classes rather than explicit representation for representing heterogeneities in leaf area index and spatial distribution of rainfall is tested. It is seen that soil moisture is affected by the representation (lumped vs distributed) of rainfall and not leaf area index. The effect of spatially distributed soil moisture on the inversion of observed SSM/I brightness temperatures to obtain soil moisture estimates is investigated. The inversion process does not exhibit biases in the retrieval of soil moisture. The methodology presented in this paper can be used for any satellite sensor for purposes of analysis and evaluation.  相似文献   

15.
Results of radiometric measurements over bare and vegetated fields with dual-polarized microwave radiometers at 1.4-GHz and 5-GHz frequencies are presented. The measured brightness temperatures over bare fields are shown to compare favorably with those calculated from radiative transfer theory with two constant parameters characterizing surface roughness effect. The presence of vegetation cover is found to reduce the sensitivity to soil moisture variation. This sensitivity reduction is generally more pronounced the denser the vegetation cover and the higher the frequency of observation. The effect of vegetation cover is also examined with respect to the measured polarization factor at both frequencies. With the exception of dry corn fields, the measured polarization factor over vegetated fields is found appreciably reduced compared to that over bare fields. A much larger reduction in this factor is found at 5 GHz than at 1.4 GHz.  相似文献   

16.
In the past decade, numerous studies have demonstrated the potential of satellite remote sensing for providing accurate timely crop area information. This study assessed the impact of Landsat data acquisition history on classification and area estimation accuracy of corn and soybeans in the U.S. Corn Belt. The results illustrate the importance of selecting Landsat acquisitions based on spectral differences in crops at certain development stages. Although early season information can provide estimates of total corn and soybean areas, acquisitions from about emergence and after tasseling of the corn seem to provide a minimal set for accurate identification of corn and soybeans in the U.S. Corn Belt. Additional acquisitions provide only marginally greater separability for corn and soybeans.  相似文献   

17.
ABSTRACT

Sea-surface salinity (SSS) can be measured from space using a microwave sensor. However, achieving the desired accuracy in SSS retrieval is challenging due to the lower sensitivity of the brightness temperature to SSS especially at low sea-surface temperature conditions. The retrieval accuracy can be further degraded due to the atmospheric and sea-surface effects (including emission and reflection), which require more accurate correction methods based on the radiative transfer model. In this article, a vector radiative transfer model (VRTM) was developed based on a matrix operator method that considers the ocean–atmosphere system under non-raining conditions. The results from this model were compared with measurement data provided by the Soil Moisture and Ocean Salinity (SMOS) satellite sensor and the results from two other RT models (RT4 model and a forward model of the European Space Agency, ESA). Statistical evaluation of these results revealed that estimation errors of top of atmosphere (TOA) radiance by the VRTM model was less than 0.3% as compared to the RT4 model results. The difference of the brightness temperatures predicted by the VRTM model and measured by the SMOS was within 1.5 K which was better than the ESA’s forward model predictions. These results suggest that the VRTM is relatively more accurate and has high computational efficiency for simulating the TOA brightness temperature for various scientific research and remote-sensing applications.  相似文献   

18.
北京一地基微波辐射计的观测数据一致性分析和订正实验   总被引:2,自引:0,他引:2  
基于辐射传输理论,以地基微波辐射计亮温数据质量控制研究为目的,以北京一台多通道微波辐射计为例,对其2010和2011年每天8:00和20:00(BT)的“晴空”观测亮温数据进行了分析,并利用独立来源的大气层结资料通过辐射传输方程进行亮温模拟计算,检验了亮温数据的“晴空”观测和数值模拟结果之间的一致性,发现了因“定标”和“搬迁”引起的数据不连续和不一致问题,考虑到“定标”使观测和数值模拟结果之间的一致性优于定标之前而“搬迁”改变的是地基微波辐射计的工作环境,通过对观测数据进行分段拟合订正,改善了观测数据的连续性和一致性。该研究对基于辐射传输理论的观测数据质量控制和提高观测资料的可利用性有参考价值。  相似文献   

19.
The monitoring of snow water equivalent (SWE) and snow depth (SD) in boreal forests is investigated by applying space-borne microwave radiometer data and synoptic snow depth observations. A novel assimilation technique based on (forward) modelling of observed brightness temperatures as a function of snow pack characteristics is introduced. The assimilation technique is a Bayesian approach that weighs the space-borne data and the reference field on SD interpolated from discrete synoptic observations with their estimated statistical accuracy. The results obtained using SSM/I and AMSR-E data for northern Eurasia and Finland indicate that the employment of space-borne data using the assimilation technique improves the SD and SWE retrieval accuracy when compared with the use of values interpolated from synoptic observations. Moreover, the assimilation technique is shown to reduce systematic SWE/SD estimation errors evident in the inversion of space-borne radiometer data.  相似文献   

20.
The performance of several criteria to generate multitemporal composites of daily Moderate Resolution Imaging Spectrometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR) images for burned land mapping was tested using data acquired over the Iberian Peninsula in 2001, 2003 and 2004. The experiment was based on four tests that assessed the discriminability between burned and unburned areas, the presence of artifacts (clouds and clouds shadows), the verticality of the sensor viewing angle, and the spatial coherency of the composite images. Seven different compositing techniques were tested, based on maximizing normalized difference vegetation index (NDVI) and brightness/surface temperature, and minimizing reflectance and sensor zenith angles. The composite criterions that provide the most accurate images for burned land mapping were based on maximizing brightness/surface temperatures, either as the only criterion or in conjunction with minimizing sensor zenith angle or near infrared (NIR) reflectance. These composites present high discrimination capacity between burned and unburned areas, remove most clouds and cloud shadows, offer high spatial coherency and present middle-to-low sensor zenith angles. Traditional compositing criterion based on maximizing NDVI values provided poor results in most tests. Finally, standard NASA MODIS composite provides close to nadir observation angles, and good spatial coherency, but it offered lower discrimination between burned and unburned areas that those composites based on thermal data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号