首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remotely sensed images and processing techniques are a primary tool for mapping changes in tropical forest types important to biodiversity and environmental assessment. Detailed land cover data are lacking for most wet tropical areas that present special challenges for data collection. For this study, we utilize decision tree (DT) classifiers to map 32 land cover types of varying ecological and economic importance over an 8000 km2 study area and biological corridor in Costa Rica. We assess multivariate QUEST DTs with unbiased classification rules and linear discriminant node models for integrated vegetation mapping and change detection. Predictor variables essential to accurate land cover classification were selected using importance indices statistically derived with classification trees. A set of 35 variables from SRTM-DEM terrain variables, WorldClim grids, and Landsat TM bands were assessed.

Of the techniques examined, QUEST trees were most accurate by integrating a set of 12 spectral and geospatial predictor variables for image subsets with an overall cross-validation accuracy of 93% ± 3.3%. Accuracy with spectral variables alone was low (69% ± 3.3%). A random selection of training and test set pixels for the entire landscape yielded lower classification accuracy (81%) demonstrating a positive effect of image subsets on accuracy. A post-classification change comparison between 1986 and 2001 reveals that two lowland forest types of differing tree species composition are vulnerable to agricultural conversion. Tree plantations and successional vegetation added forest cover over the 15-year time period, but sometimes replaced native forest types, reducing floristic diversity. Decision tree classifiers, capable of combining data from multiple sources, are highly adaptable for mapping and monitoring land cover changes important to biodiversity and other ecosystem services in complex wet tropical environments.  相似文献   


2.
Our objective was to provide a realistic and accurate representation of the spatial distribution of Chinese tallow (Triadica sebifera) in the Earth Observing 1 (EO1) Hyperion hyperspectral image coverage by using methods designed and tested in previous studies. We transformed, corrected, and normalized Hyperion reflectance image data into composition images with a subpixel extraction model. Composition images were related to green vegetation, senescent foliage and senescing cypress‐tupelo forest, senescing Chinese tallow with red leaves (‘red tallow’), and a composition image that only corresponded slightly to yellowing vegetation. These statistical and visual comparisons confirmed a successful portrayal of landscape features at the time of the Hyperion image collection. These landscape features were amalgamated in the Landsat Thematic Mapper (TM) pixel, thereby preventing the detection of Chinese tallow occurrences in the Landsat TM classification. With the occurrence in percentage of red tallow (as a surrogate for Chinese tallow) per pixel mapped, we were able to link dominant land covers generated with Landsat TM image data to Chinese tallow occurrences as a first step toward determining the sensitivity and susceptibility of various land covers to tallow establishment. Results suggested that the highest occurrences and widest distribution of red tallow were (1) apparent in disturbed or more open canopy woody wetland deciduous forests (including cypress‐tupelo forests), upland woody land evergreen forests (dominantly pines and seedling plantations), and upland woody land deciduous and mixed forests; (2) scattered throughout the fallow fields or located along fence rows separating active and non‐active cultivated and grazing fields, (3) found along levees lining the ubiquitous canals within the marsh and on the cheniers near the coastline; and (4) present within the coastal marsh located on the numerous topographic highs.  相似文献   

3.
森林叶面积指数遥感反演模型构建及区域估算   总被引:2,自引:0,他引:2  
基于eCognition面向对象分类算法及校正后的TM遥感影像,获取研究区2010年土地利用/覆被数据。同时在ArcGIS平台下,提取遥感影像6个波段反射率及RVI、NDVI、SLAVI、EVI、VII、MSR、NDVIc、BI、GVI和WI等10个植被指数,并辅助于DEM、ASPECT、SLOPE等地形信息,在与植物冠层分析仪(TRAC)实测各森林类型叶面积指数相关性分析的基础上,研究表明:相对多元线性回归方法,偏最小二乘法能够更好地把握各森林类型LAI动态变化,而后结合研究区森林覆被信息进行区域估算。  相似文献   

4.
Mapping northern land cover fractions using Landsat ETM+   总被引:1,自引:0,他引:1  
The goal of fractional mapping is to obtain land cover fraction estimates within each pixel over a region. Using field, Ikonos and Landsat data at three sites in northern Canada, we evaluate a physical unmixing method against two modeling approaches to map five land cover fractions that include bare, grass, deciduous shrub, conifer, and water along an 1100 km north-south transect crossing the tree-line of northern Canada. Error analyses are presented to assess factors that affect fractional mapping results, including modeling method (linear least squares inversion (LLSI) vs. linear regression vs. regression trees), number of Landsat spectral bands (3 vs. 5), local and distant fraction estimation using locally and globally calibrated models, and spatial resolution (30 m vs. 90 m). The ultimate purpose of this study is to determine if reliable land cover fractions can be obtained for biophysical modeling over northern Canada from a three band, resampled 90 m Landsat ETM+ mosaic north of the tree-line. Of the three modeling methods tested, linear regression and regression trees with five spectral bands produced the best local fraction estimates, while LLSI produced comparable results when unmixing was sufficiently determined. However, distant fraction estimation using both locally and globally calibrated models was most accurate using the three spectral bands available in the Landsat mosaic of northern Canada at 30 m resolution, and only slightly worse at 90 m resolution. While local calibrations produced more accurate fractions than global calibrations, application of local calibration models requires stratification of areas where local endmembers and models are representative. In the absence of such information, globally calibrated linear regression and regression trees to estimate separate fractions is an acceptable alternative, producing similar root mean square error, and an average absolute bias of less than 2%.  相似文献   

5.
以扎龙自然保护区湿地为例,结合ENVISat ASAR多极化(HH/HV)雷达影像与传统的光学影像Landsat TM (band1~5,7),分析雷达影像后向散射系数与Landsat TM影像不同波段反射率在淹水植被、非淹水植被、明水面和裸土不同地表覆被类型的差异。选择训练样本,采用分类回归树(Classification and Regression Tree,CART)模型,分别对两种影像进行分类,可视化表达湿地植被淹水范围空间分布情况。基于实测的植被冠层下淹水范围与非淹水范围样本点对两种数据源的分类结果进行精度验证。结果表明:HH/HV极化影像中,植被覆盖下水体的后向散射系数与其他地表覆被类型有明显区别,分类结果总精度为79.49%,Kappa系数为0.70,湿地植被淹水范围提取精度较高。而TM影像分类结果中,由于部分地区植被覆盖水体,淹水植被分类误差较高。将雷达影像引入沼泽湿地研究,提高了植被淹水范围提取效果,为有效分析湿地生态水文过程提供基础,对湿地水资源合理利用及生物多样性保护具有重要意义。  相似文献   

6.

Land cover maps are used widely to parameterize the biophysical properties of plant canopies in models that describe terrestrial biogeochemical processes. In this paper, we describe the use of supervised classification algorithms to generate land cover maps that characterize the vegetation types required for Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (FPAR) retrievals from MODIS and MISR. As part of this analysis, we examine the sensitivity of remote sensing-based retrievals of LAI and FPAR to land cover information used to parameterize vegetation canopy radiative transfer models. Specifically, a decision tree classification algorithm is used to generate a land cover map of North America from Advanced Very High Resolution Radiometer (AVHRR) data with 1 km spatial resolution using a six-biome classification scheme. To do this, a time series of normalized difference vegetation index data from the AVHRR is used in association with extensive site-based training data compiled using Landsat Thematic Mapper (TM) and ancillary map sources. Accuracy assessment of the map produced via decision tree classification yields a cross-validated map accuracy of 73%. Results comparing LAI and FPAR retrievals using maps from different sources show that disagreement in land cover labels generally do not translate into strong disagreement in LAI and FPAR maps. Further, the main source of disagreement in LAI and FPAR maps can be attributed to specific biome classes that are characterized by a continuum of fractional cover and canopy structure.  相似文献   

7.
The paper investigated the application of MODIS data for mapping regional land cover at moderate resolutions (250 and 500 m), for regional conservation purposes. Land cover maps were generated for two major conservation areas (Greater Yellowstone Ecosystem—GYE, USA and the Pará State, Brazil) using MODIS data and decision tree classifications. The MODIS land cover products were evaluated using existing Landsat TM land cover maps as reference data. The Landsat TM land cover maps were processed to their fractional composition at the MODIS resolution (250 and 500 m). In GYE, the MODIS land cover was very successful at mapping extensive cover types (e.g. coniferous forest and grasslands) and far less successful at mapping smaller habitats (e.g. wetlands, deciduous tree cover) that typically occur in patches that are smaller than the MODIS pixels, but are reported to be very important to biodiversity conservation. The MODIS classification for Pará State was successful at producing a regional forest/non-forest product which is useful for monitoring the extreme human impacts such as deforestation. The ability of MODIS data to map secondary forest remains to be tested, since regrowth typically harbors reduced levels of biodiversity. The two case studies showed the value of using multi-date 250 m data with only two spectral bands, as well as single day 500 m data with seven spectral bands, thus illustrating the versatile use of MODIS data in two contrasting environments. MODIS data provide new options for regional land cover mapping that are less labor-intensive than Landsat and have higher resolution than previous 1 km AVHRR or the current 1 km global land cover product. The usefulness of the MODIS data in addressing biodiversity conservation questions will ultimately depend upon the patch sizes of important habitats and the land cover transformations that threaten them.  相似文献   

8.
As an alternative to the traditional approach of using predefined classification schemes with discrete numbers of cover types to describe the geographic distribution of vegetation over the Earth's land surface, we apply a linear mixture model to derive global continuous fields of percentage woody vegetation, herbaceous vegetation and bare ground from 8 km Advanced Very High Resolution Radiometer (AVHRR) Pathfinder Land data. Linear discriminants for input into the mixture model are derived from 30 metrics representing the annual phenological cycle, using training data derived from a global network of scenes acquired by Landsat. We test the stability and robustness of the method by assessing the consistency of results derived independently for each year in the 1982 to 1994 AVHRR data set. For those forested locations where land cover variability would not be expected, the percentage woody estimates displayed standard deviations over the 12 years of less than 10%. Problems with the method occur in high latitudes where snow cover in some years and not others produces inconsistencies in the continuous fields. Overall, the results suggest that the method produces fairly consistent results despite apparent problems with artifacts in the multi-year AVHRR data set due to calibration problems, aerosols and other atmospheric effects, bidirectional effects, changes in equatorial crossing time, and other factors. Comparison of continuous fields with other land cover data sets derived from remote sensing suggests 69% to 84% agreement in the per cent woody field, with the highest agreement when per cent woody is averaged over the 12 years. In comparison with regional data sets for the US and Bolivia, the method overestimates per cent woody vegetation for grassland and sparsely wooded locations. We conclude that the method, with possible refinements and more sophisticated methods to include multiple endmembers, improved estimates of endmember values and nonlinear responses of vegetation to proportional cover, can potentially be used to indicate changes in land cover characteristics over time using multi-year data sets as inputs when perfect calibration and consistency between years cannot be assumed.  相似文献   

9.

Traditional land classification techniques for large areas that use Landsat Thematic Mapper (TM) imagery are typically limited to the fixed spatial resolution of the sensors (30 m). However, the study of some ecological processes requires land cover classifications at finer spatial resolutions. We model forest vegetation types on the Kaibab National Forest (KNF) in northern Arizona to a 10-m spatial resolution with field data, using topographical information and Landsat TM imagery as auxiliary variables. Vegetation types were identified by clustering the field variables total basal area and proportion of basal area by species, and then using a decision tree based on auxiliary variables to predict vegetation types. Vegetation types modelled included pinyon-juniper, ponderosa pine, mixed conifer, spruce- and deciduous-dominated mixes, and openings. To independently assess the accuracy of the final vegetation maps using reference data from different sources, we used a post-stratified, multivariate composite estimator. Overall accuracy was 74.5% (Kappa statistic = 49.9%). Sources of error included differentiating between mixed conifer and spruce-dominated types and between openings in the forest and deciduous-dominated mixes. Overall, our non-parametric classification method successfully identified dominant vegetation types on the study area at a finer spatial resolution than can typically be achieved using traditional classification techniques.  相似文献   

10.
The VEGETATION (VGT) sensor in SPOT 4 has four spectral bands that are equivalent to Landsat Thematic Mapper (TM) bands (blue, red, near-infrared and mid-infrared spectral bands) and provides daily images of the global land surface at a 1-km spatial resolution. We propose a new index for identifying and mapping of snow/ice cover, namely the Normalized Difference Snow/Ice Index (NDSII), which uses reflectance values of red and mid-infrared spectral bands of Landsat TM and VGT. For Landsat TM data, NDSII is calculated as NDSIITM=(TM3-TM5)/(TM3+TM5); for VGT data, NDSII is calculated as NDSIIVGT=(B2-MIR)/(B2+MIR). As a case study we used a Landsat TM image that covers the eastern part of the Qilian mountain range in the Qinghai-Xizang (Tibetan) plateau of China. NDSIITM gave similar estimates of the area and spatial distribution of snow/ice cover to the Normalized Difference Snow Index (NDSI=(TM2-TM5)/(TM2+TM5)) which has been proposed by Hall et al. The results indicated that the VGT sensor might have the potential for operational monitoring and mapping of snow/ice cover from regional to global scales, when using NDSIIVGT.  相似文献   

11.
Abstract

This study was aimed at assessing the scope of Landsat Thematic Mapper (TM) data for vegetation classification and mapping needs in a tropical region of south-west India. Outputs generated through common digital enhancement/classification techniques were compared with the vegetation map prepared from visual interpretation of black and white panchromatic aerial photographs with a scale of 1:15000 (approximately), in terms of extractable thematic information and cost/time incurred. It has been shown that digital processing of TM data is capable of satisfying the classification and mapping needs in the country with a reasonable degree of precision (85 per cent), in much less cost and time when compared with the aerial photographs. Supervised classification using raw data was found to be more effective in discriminating vegetation types than enhancements like band ratioing and principal component analysis. It was possible to classify forest vegetation with respect to variability in bioclimatic and structural attributes by classification of digital data. In view of varied vegetation classification and mapping needs in India, it is suggested that as detailed a land cover classification as possible should be attempted initially. Subsequently, the detailed classification output, which is often difficult to read or understand, may be converted to user-specific simplified outputs by appropriate aggregation of classes.  相似文献   

12.
The tropical wetland environments of northern Australia have ecological, social, cultural and economic values. Additionally, these areas are relatively pristine compared to the many other wetland environments in Australia, and around the world, that have been extensively altered by humans. However, as the remote northern coastline of Australia becomes more populated, environmental problems are beginning to emerge that highlight the need to manage the tropical wetland environments. Lack of information is currently considered to be a major factor restricting the effective management of many ecosystems and for the expansive wetlands of the Northern Territory, this is especially the case, as these areas are generally remote and inaccessible. Remote sensing is therefore an attractive technique for obtaining relevant information on variables such as land cover and vegetation status. In the current study, Landsat TM, SPOT (XS and PAN) and large-scale, true-colour aerial photography were evaluated for mapping the vegetation of a tropical freshwater swamp in Australia's Top End. Extensive ground truth data were obtained, using a helicopter survey method. Fourteen cover types were delineated from 1:15 000 air photos (enlarged to 1:5000 in an image processing system) using manual interpretation techniques, with 89% accuracy. This level of detail could not be extracted from any of the satellite image data sets, with only three broad land-cover types identified with accuracy above 80%. The Landsat TM and SPOT XS data provided similar results although superior accuracy was obtained from Landsat, where the additional spectral information appeared to compensate in part for the coarser spatial resolution. Two different classification algorithms produced similar results.  相似文献   

13.
Landsat urban mapping based on a combined spectral-spatial methodology   总被引:1,自引:0,他引:1  
Urban mapping using Landsat Thematic Mapper (TM) imagery presents numerous challenges. These include spectral mixing of diverse land cover components within pixels, spectral confusion with other land cover features such as fallow agricultural fields and the fact that urban classes of interest are of the land use and not the land cover category. A new methodology to address these issues is proposed. This approach involves, as a first step, the generation of two independent but rudimentary land cover products, one spectral-based at the pixel level and the other segment-based. These classifications are then merged through a rule-based approach to generate a final product with enhanced land use classes and accuracy. A comprehensive evaluation of derived products of Ottawa, Calgary and cities in southwestern Ontario is presented based on conventional ground reference data as well as inter-classification consistency analyses. Producer accuracies of 78% and 73% have been achieved for urban ‘residential’ and ‘commercial/industrial’ classes, respectively. The capability of Landsat TM to detect low density residential areas is assessed based on dwelling and population data derived from aerial photography and the 2001 Canadian census. For low population densities (i.e. below 3000 persons/km2), density is observed to be monotonically related to the fraction of pixels labeled ‘residential’. At higher densities, the fraction of pixels labeled ‘residential’ remains constant due to Landsat's inability to distinguish between high-rise apartment dwellings and commercial/industrial structures.  相似文献   

14.
15.
Recent developments in global land-cover mapping have focused on spatial resolution improvement with more heterogeneous features to integrate spatial, spectral and temporal information. In this study, hundreds of features derived from four seasonal Landsat 8 OLI (Operational Land Imager) spectral bands, Moderate Resolution Imaging Spectroradiometer (MODIS) time series vegetation index (VI) data, night-time light (NTL), digital elevation models (DEM) and climatic variables were used for land cover mapping with a target 30-m resolution for the whole African continent. In total, 49,007 training samples (from 11,231 locations) and 23,803 validation samples (from 5,414 locations) interpreted from seasonal Landsat, MODIS Normalized Difference Vegetation Index (NDVI) time series and high-resolution images in Google Earth were used for classifier training (Random Forest) and map validation. Overall accuracy was 76% at 30-m spatial resolution, which is better than previous land cover mapping for the African continent. Besides, accuracies for cropland were improved dramatically by more than 10%. Our method also addressed many remaining issues for 30-m mapping (e.g. boundary effects and declines in resolution). This framework is promising for automatic and efficient global land cover mapping resulting in better visual effects and classification accuracy.  相似文献   

16.
Information about the extent of impervious surface and its rate of development is a valuable indicator of urban growth and environmental quality and thus relevant for a wide range of research related to urban ecosystems. Using SPOT-5 data from 2005 to 2009, impervious surface was estimated at a subpixel level for the area of Can Tho province in the Mekong Delta, based on a Support Vector Regression model. Training data comprised a set of SPOT-5 reflectance values each associated with an individual value of subpixel imperviousness as their respective labels. The latter were obtained on the basis of a land cover map, which in turn was derived from a pansharpened QB subset by means of an object-oriented image classification approach. In addition, by varying different sets of training data in the model building process the spectral interrelationships between the urban land cover classes (water, bare soil, vegetation, and impervious surface) and their effect on the estimation of subpixel imperviousness could be examined. In order to exclude irrelevant areas (natural/undeveloped land) from the impervious surface estimation process, single-polarised TerraSAR-X data were used to delineate settlement areas by an object-oriented image classification approach. Furthermore, a change detection method was applied for the respective time period in order to test the suitability of the approach for the automated detection of structural developments within the urban topography. Settlement areas were correctly identified with overall accuracies between 81% and 94%, whilst the comparison of the modelled impervious estimates to the training values gave an absolute mean error below 15%. The results prove the suitability of the approach for an area-wide but selective mapping and monitoring of impervious surface cover within settlement areas only.  相似文献   

17.
This paper highlights advantages of using Synthetic Aperture Radar (SAR) data combined with multispectral data to improve vegetal cover assessment and monitoring in a semi-arid region of southern Algeria. We present a number of preprocessing and processing techniques using multidate optical data analysis alone and SAR ERS-1 and Landsat Thematic Mapper (TM) data integration due to aspects of radar image enhancement techniques and the study of roughness of different types of vegetation in steppic regions. Image data integration has become a valuable approach to integrate multisource satellite data. It has been found that image data from different spectral domains (visible, near-infrared, microwave) provides datasets with complementarity information content and can be used to improve the spatial resolution of satellite images. In this communication, we present a part of the cooperation research project which deals with fusing ERS-1 SAR geocoded images with Landsat TM data, investigating different combinations of integration and classification techniques. The methodology consists of several steps: (1) Speckle noise reduction by comparative performance of different filtering algorithms. Several filtering algorithms were implemented and tested with different window sizes, iterations and parameters. (2) Geometric superposition and geocoding of optical images regarding SAR ERS-1 image and resampling at unique resolution of 25 m. (3) Application of different numerical combinations of integration techniques and unsupervized classifications such as the Forgy method, the MacQueen method and other methods. The results were compared with vegetal cover mapping from aerial photographs of the region of Foum Redad in the south of the Saharian Atlas. The combinations proposed above allow us to distinguish different themes in the arid and semi-arid regions in the south of the Saharian Atlas using a colour composite image and show a good correlation between different types of land cover and land use and radar backscattering level in the SAR data which corresponds essentially to the roughness of the soil surface.  相似文献   

18.
Analytical canopy reflectance (CR) models have reached the level of adequacy that makes it possible to estimate vegetation parameters by inversion of such models. The growing efficiency of algorithms and the increasing power of computers urge the development of procedures for the estimation of vegetation phytometrical parameters on large areas using satellite data and inversion of theoretical CR models. In this article, clusterization of a Landsat Thematic Mapper (TM) quarter scene is performed in the space of spectral signatures, and the CR model is inverted for these clusters. Optical parameters of the atmosphere which are needed for the atmospheric correction are estimated on the same image. The estimated Leaf Area Index (LAI) pattern is in good accordance to the land use map. Estimated LAI and chlorophyll content of forests are systematically biased.  相似文献   

19.
Landsat 卫星遥感数据具有分辨率较高,数据积累时间长的特点,在探测地表覆盖变化和地物分类中得到广泛应用。首先,对获取的Landsat TM/ETM+时间序列数据进行了定量化处理,获取了三江平原七台河市1989~2012年时间序列Landsat地表反射率图像。其次,设计了林地指数和湿地指数,提取了三江平原七台河区域地物光谱和时序特征,同时设计构建了地表覆盖分类和植被地表类型变化探测的决策树算法,实现了1989~2012年七台河区域的植被地表覆盖变化的动态监测,提取了森林覆盖变化的空间分布与变化时间。最后,对七台河区域地表覆盖与植被地表类型变化进行了精度检验,分类总体精度达到90.04%,Kappa系数达0.88。研究结果表明:基于定量化的Landsat时间序列数据的分类算法能克服单时相影像分类的缺陷,实现区域地物自动分类和地表覆盖变化的动态监测。
  相似文献   

20.
Tillage management practices have a direct impact on water-holding capacity, evaporation, carbon sequestration and water quality. This study examines the feasibility of two statistical learning algorithms, namely the least square support vector machine (LSSVM) and relevance vector machine (RVM), for identifying two contrasting tillage management practices using remote-sensing data. LSSVM is firmly based on statistical learning theory, whereas RVM is a probabilistic model where the training takes place in a Bayesian framework. Input to the LSSVM and RVM algorithms were reflectance values at different bandwidths and indices derived from Landsat Thematic Mapper (TM) data. Ground-truth data for this study were collected from 72 commercial production fields in two counties located in the Texas High Plains of the south-central USA. Numerous LSSVM- and RVM-based tillage models were developed and evaluated for tillage classification accuracy. The percentage correct and kappa statistic were used for the evaluation. The results showed that the best LSSVM and RVM models included the use of TM band 5 or vegetation indices that involved TM band 5, indicating sensitivity of near-infrared reflectance of crop residue cover on the surface. This is consistent with other remote-sensing models reported in the literature. Overall classification accuracies of the best LSSVM and RVM models were 87.8 and 90.2%, respectively. The corresponding kappa statistics for those models were 0.75 and 0.80, respectively. Furthermore, comparison of the best LSSVM and RVM models with the published logistic regression-based tillage models developed with the same data indicated the superiority of the RVM model over LSSVM and logistic regression models in determining contrasting tillage practices with Landsat TM data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号