首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A turbocharged diesel engine model was built with the GT-Power software,and experimentally verified.Then two different control variables for the control of the variable geometry turbocharger(VGT)were described,and their distinct effects on engine performance,i.e.NOxand soot emissions and fuel consumption,were simulated and compared on the basis of this model.The results showed that NOxemissions decreased obviously with the increase of exhaust gas recirculation(EGR)rate at constant boost pressure condition,but soot emissions and fuel consumption considerably increased.It was a good way to reduce NOxemissions without increasing fuel consumption and soot emissions when VGT was controlled to maintain the excess oxygen ratio unchanged as EGR rate increases.  相似文献   

2.
Achieving simultaneous reduction of NO x , CO and unburned hydrocarbon (UHC) emissions without compromising engine performance at part loads is the current focus of dual fuel engine research. The present work focuses on an experimental investigation conducted on a dual fuel (diesel-natural gas) engine to examine the simultaneous effect of inlet air pre-heating and exhaust gas recirculation (EGR) ratio on performance and emission characteristics at part loads. The use of EGR at high levels seems to be unable to improve the engine performance at part loads. However, it is shown that EGR combined with pre-heating of inlet air can slightly increase thermal efficiency, resulting in reduced levels of both unburned hydrocarbon and NO x emissions. CO and UHC emissions are reduced by 24% and 31%, respectively. The NO x emissions decrease by 21% because of the lower combustion temperature due to the much inert gas brought by EGR and decreased oxygen concentration in the cylinder.  相似文献   

3.
The effects of EGR and ignition timing on engine emissions and combustion were studied through an experiment carried out on an air-guided GDI engine. The test results showed that the ignition timing significantly affected the GDI engine emissions, that the NO x emissions significantly reduced when the ignition timing was retarded, and that NO x emissions decreased with the EGR level increasement. A higher EGR rate could reduce CO emissions while the CO emissions were less affected by the ignition timing. The HC emissions decreased at a lower EGR rate. At 2500 r/min, an appropriate EGR rate could cut down CO emissions. The exhaust gas temperature could significantly decrease with improving the EGR rate, and the exhaust gas temperature at 2500 r/min was clearly higher than that at 1850 r/min. The nucleation mode particles increased clearly, the accumulation mode particle number decreased gradually with the increase of EGR rate, and the typical particle size of nucleation mode particle was in the range of 10–25 nm.  相似文献   

4.
With increasingly stringent emission regulations and demand for fuel economy by the public,the combustion and emission problems of automotive diesel engines during transient operation have become vital and urgent issues.In this study,combustion deterioration has been experimentally analyzed using a heavy-duty turbocharged diesel engine running under transient conditions(constant speed and increasing torque).Optimization of the transient combustion process was performed by adjusting the fuel injection parameters.The results indicated that the notable combustion deterioration relative to steady state operation while transient was a function of the delay in the air-supply to the turbocharged engine,and took the form of combustion phasing delay,resulting in rapidly increasing smoke emission and fuel consumption.However,the delay in combustion phasing can be controlled by advancing the fuel injection timing,effectively increasing thermal efficiency.Unfortunately,smoke and NO x emissions increased at the same time.The deterioration in combustion phasing can also be improved by increasing injection pressure,resulting in decreased smoke emission while NO x emission increased.It is worth noting that the effective thermal efficiency first increased and then decreased as fuel injection pressure increased during transient operation.  相似文献   

5.
在一台加装了电控氢气喷射系统的汽油机上,在发动机1 400 r/min的条件下,对混氢汽油机排放性能进行了试验研究.试验结果表明:适当增加过量空气系数有利于改善混氢汽油机的HC、CO与NOx排放;在理论过量空气系数附近,混氢后发动机CO排放有所升高,但稀燃条件下混氢有利于改善汽油机HC与CO排放;减小点火角后,混氢汽油机HC与NOx排放有所降低;随着进气压力的升高,HC与CO排放得到明显改善.  相似文献   

6.
The effects of various split injection strategies on the opposed-piston opposed-cylinder (OPOC)diesel engine combustion and emission characteristics have been studied numerically using AVL-Fire CFD tools. The five rate-shaped main injections were used in split injection strategies. The results show that ignition delay from a rectangular injection rate is the shortest. Maximum pressure of the trapezoid injection rate is the largest. And the NOx emission of the rectangular injection rate is the largest. Meanwhile, the soot emission of the trapezoid injection rate is the least among the five injection rates.  相似文献   

7.
进气CO_2浓度和燃油压力对柴油机性能的影响   总被引:1,自引:1,他引:0  
研究采用缸外混合方式在合适浓度范围内向气缸充入CO2,同时调整燃油喷射压力,探求在这两因素作用下,柴油机性能和排放的变化规律.试验结果表明:CO2充入缸内可以有效降低NOx排放量;随着燃油喷射压力上升,NOx会在持续增加到一定量后有所下降;在低喷射压力和高浓度CO2的双重作用下,有较高的碳烟排放量;CO2对柴油机排放性能的影响要大于对柴油机性能的影响.  相似文献   

8.

中国小型农用柴油机燃用甲醇/生物柴油/DTBP的性能与排放试验研究

李瑞娜1,2,3,张亮1,朱佳隆1,华琰1,王忠1

(1、江苏大学汽车与交通工程学院,江苏 镇江212013;

2. 汽车测控与安全四川省重点实验室,成都 610039;

3. 四川省新能源汽车智能控制与仿真测试技术工程研究中心,成都 610039)

摘 要:

为了研究甲醇和生物柴油对小型农用柴油机性能、经济性和排放的影响,分析了甲醇和生物柴油的物理化学性质(十六烷值、低热值、粘度等)。甲醇和生物柴油的性质在一定程度上表现出良好的互补性。当在生物柴油中加入大量甲醇时,甲醇/生物柴油混合物的十六烷值将大幅度降低。由于混合燃料的十六烷值对柴油机的燃烧过程有很大影响,在对甲醇/生物柴油的混合比进行试验后,分别用5%(BM5)、10%(BM10)、15%(BM15)的甲醇添加到生物柴油中制备了混合燃料。选择过氧化二叔丁基(DTBP)作为十六烷值改进剂添加到甲醇/生物柴油混合物中。在BM15中分别加入0.25%、0.50%、0.75%的DTBP。在186FA柴油机上进行台架试验,研究了甲醇和DTBP对发动机性能和排放的影响。结果表明,在额定工况下,与生物柴油相比,BM5、BM10和BM15的NOx浓度分别降低了5.02%、33.85%和21.24%,烟度分别降低了5.56%、22.22%和55.56%,发动机功率降低了5.77%、14.23%和25.41%,比能耗提高了3.31%,7.78%和6.37%。在甲醇/生物柴油中添加DTBP可以将发动机功率恢复到柴油的水平。DTBP对降低比能耗、降低NOx、CO、HC浓度有较好的效果,但排气烟度略有增加。

关键词:甲醇、生物柴油、农用柴油机、燃烧、性能、排放

  相似文献   

9.
In order to investigate the NOxemission of hydrogen internal combustion engines.A test system for four-cylinder intake port-fuel-injection hydrogen internal combustion engine(H2ICE)is established to study the effect of fuel-air equivalence ratio,ignition advance angle,engine speed and exhaust gas recirculation on NOx emission.Experimental results show that the fuel-air equivalence ratio is the key factor to NOxemission,NOxemission concentration is always higher than 8 000×10-6 when the fuel-air equivalence ratio is larger than 0.8and lower than 500×10-6 when the fuel-air equivalence ratio is smaller than 0.5.The ignition advance angle and engine speed also play important roles on NOxemission formation.EGR is an useful method to reduce NOx emission concentration at large fuel-air equivalence ratio especially when engine speed is low and EGR ratio is high.  相似文献   

10.
Combustion chamber components (cylinder head, cylinder liner, piston assembly and oil film) are treated as a coupled body. Based on the three-dimensional numerical simulation of heat transfer of the coupled body, a coupled three-dimensional calculation model for the in-cylinder working process and the combustion chamber components was built with domain decomposition and boundary coupling method, in which the coupled three-dimensional simulation of in-cylinder working process and the combustion chamber components was adopted. The simulation was applied in the influence investigation of the space non-uniformity in heat transfer among combustion chamber components on the generation of in-cylinder emissions. The results show that the space non-uniformity in heat transfer among the combustion chamber components has great influence on the generation of in-cylinder NO x emissions. The heat transfer space non-uniformity of combustion chamber components has little effect on soot formation, and far less effect on soot formation than on NO x . Under two situations of different wall temperature distributions, the soot in cylinder is different by 1.3% when exhaust valves are open.  相似文献   

11.
The soot surface growth plays significant role on the soot mass accumulation,which starts with H(hydrogen)atom abstraction forming activated soot surface sites,and is followed by the acetylene addition process.In this study,the effect of the mixture inhomogeneity and combustion temperature on the soot surface activity and soot formation was investigated by developing a new multi-step phenomenological(MSP)soot model of diesel engines.A new detailed soot surface growth mechanism was proposed by correlation analysis of combustion parameters with soot formation.The inhomogeneity coefficient of soot surface activityαCH and the specific rate of soot surface growth R CH were derived to highlight the effect of inhomogeneity of mixture and combustion temperature on soot formation.The predicted diesel engine-out soot agreed well with experimental findings in wide ranges of combustion conditions.In the case of lower engine load with single fuel injection and higher EGR(exhaust gas recirculation)rate,it had quiet homogeneous mixtures before ignition when the combustion temperature dominated the soot surface activity.At medium engine load with multi-pulse fuel injections,it got mixture slightly stratified before ignition and revealed that the mixture inhomogeneity became more dominated on soot surface activity than the combustion temperature.An increased soot surface activity led to increased soot emission.Under the full engine loads with single fuel injection but quite high boost pressure over 0.4 MPa,it led to the combustion conditions of higher mixture density and higher mixture heat capacity,which benefits the mixture homogeneity.The decay rate of soot surface activity became lower due to the decreased combustion temperature and the soot surface activity decreased due to improved mixture homogeneity.In addition,the lowered intake oxygen concentration due to usage of EGR played a role to lower the specific rate of soot surface growth R CH,but to increase the soot surface activityαCH.  相似文献   

12.
燃油添加剂对柴油机排放影响的试验研究   总被引:5,自引:0,他引:5  
柴油机的扩散燃烧方式会产生较高的烟度排放,在燃油中加入少量的燃油添加剂能够改善燃烧过程降低排放.通过在柴油中添加微量的金属添加剂铈(Ce),并在发动机台架上进行实验,研究了Ce对柴油机排放的影响.实验表明,随着Ce的体积分数由5.0×10-5逐渐增加到1.0×10-4,在整个试验转速区间,HC逐渐降低,最多降低41.6%;在低速区,CO降低,最多降低23.4%,在中高速区,则基本与原机相同;在整个试验转速区间,NOx均高于原机,最多增加18.7%,烟度在低速区低于原机,最多降低36.5%,在中高速区则与原机基本相同.  相似文献   

13.
The life cycle index of remanufactured engines was assessed by using the method of life cycle assessment (LCA). A remanufactured engine of a certain domestic brand was taken as researching object. Engine reproducing engineering was investigated from three aspects which were energy, material and environment. The application of LCA on remanufacturing engines was discussed in detail with a practical case. The results indicate that remanufacturing an engine can save 55 kg steels, 8.3 kg aluminum and 113 kW · h electric powers and reduce emissions of 565 kg CO2, 6.09 kg CO, 1.01 kg NO x , 3.985 kg SO x and 288.725 kg solid waste. The remanufacturing of engines possesses great economic value and practicability. Foundation item: Project (50235030) supported by the National Natural Science Foundation of China  相似文献   

14.
对4100QBZL柴油机燃用柴油和生物柴油并安装氧化催化转化器(DOC)后进行了试验研究.结果表明:燃用生物柴油后,外特性和负荷特性下动力性和经济性有所下降,CO、HC和碳烟的排放均显著降低,而NOx的排放略有上升;加装DOC后,外特性和负荷特性下动力性和经济性变化不大,CO、HC和碳烟的排放明显降低,NOx也变化不大,但DOC对碳烟的转化率不如CO和HC;由于受温度影响DOC在负荷特性下的转化率不如外特性.  相似文献   

15.
A series of Ag, Cu and Co-doped manganese oxide octahedral molecular sieves (OMS-2) were synthesized and evaluated to remove nitrogen oxides (NO x ) from cigarette mainstream smoke. The three kinds of catalysts were added to cigarettes for studying the capabilities of reducing NO x from cigarette mainstream smoke. The catalysis and reduction of NO in laboratory were studied. A mechanism for NO x catalytic reduction from burning cigarettes with the catalysts adding to cigarettes was described. The catalysts show excellent catalytic activity for NO x removal, especially the Ag-doped OMS-2 catalyst. 0.5% (mass fraction) Ag-doped OMS-2 catalyst has the best ability to remove NO x from cigarette mainstream smoke. The use of Ag-doped OMS-2 as catalyst for removing carcinogenic compounds from cigarette smoke will be an effective strategy to protect the environment and public health.  相似文献   

16.
二甲醚对乙醇内燃机性能的影响   总被引:1,自引:0,他引:1  
对乙醇掺二甲醚点燃式内燃机的性能进行研究.试验在加装了电控二甲醚喷射系统的内燃机上进行,从而保证乙醇与二甲醚能同时喷入进气道.在转速为1 800 r/min、进气道绝对压力为61.5 kPa、过量空气系数分别为1.0及1.1的条件下,通过逐渐增加二甲醚的喷射脉宽,使二甲醚占进气的体积分数从0加至3%.结果表明:随掺二甲醚体积分数的增加,内燃机指示热效率提高,循环变动降低,CO、HC排放降低,但NO_x略有升高.  相似文献   

17.
This paper reports the effects of variations in the fuel composition of H2/CO/CH4 syngas on the characteristics of NO x and CO emissions in a partially-premixed gas turbine combustor. Combustion tests were conducted on a full range of fuel compositions by varying each component gas from 0% to 100% at heat inputs of 40 and 50 kWth. Flame temperature, combustor liner temperature, ignition delay time, and flame structure were investigated computationally and experimentally to judge whether they are significant indicators of NO x and CO formation. The characteristics of and reasons for NO x and CO emissions were investigated by analyzing the emission mechanisms and relationships among fuel property, equivalence ratio, flame temperature, liner temperature, flame shape. The flame structures were investigated using the following flame visualization methods: (1) time-averaged OH* chemiluminescence and its Abel-deconvolution; (2) direct photography; and (3) instantaneous OH-PLIF. The flame structures were greatly changed by the fuel composition and heat input, and they were subjected to key affecting parameters of the temperatures of the flames and the liners. NO x and CO emissions also largely varied according to fuel composition and heat input, showing neither linearly nor exponentially clear proportional trends toward the syngas compositions because of the singular conditions. For example, only the 100% CO flame at low load emitted lots of CO, whereas complete combustion was observed in other cases. However, the qualitative observations showed that the root causes of NO x emission behaviors were flame temperature and flame structure, which were directly related to the residence time in the flame. Various sets of practical test results were obtained, and these results could contribute to the optimal selection of the fuel-feeding condition when fuel is changed from natural gas to syngas in order to minimize NO x and CO emissions with stable combustion.  相似文献   

18.
通过ECER49十三工况试验研究了喷油提前角、进气动压和冷却水温对柴油机有害排放物的影响 ,发现在定转速下适当增大喷油提前角可以降低CO ,HC排放 .同一提前角 ,标定转速下的气态排放物要多于最大转矩转速情况 ;相同转速 ,适当增加进气动压可降低CO ,HC排放 ,可以加装进气动压传感器实现闭环控制 ,可降低气态排放 .同一进气动压 ,标定转速下所生成的CO ,HC要多于最大转矩转速情况 ;冷却水温对于排放的影响不能孤立考虑 ,要结合缸内温度同时进行 .上述变化经过定量分析 ,所得结论可以为柴油机电控系统设计及控制策略的研究提供参考依据  相似文献   

19.
目前降低NOx生成与排放技术中,再燃技术具有改造费用低、锅炉运行效率高、降低NOx排放效率显著等特点。通过分析超细粉、生物质气、天然气和H2作为再燃燃料的机理、影响因素、优缺点和实际应用情况,比较了不同再燃技术降低NOx排放的技术参数和经济性,发现H2再燃技术降低燃煤锅炉NOx排放具有较大优越性。  相似文献   

20.
An experimental study was performed to compare the effects of high- and low-pressure exhaust gas recirculation loops (HP and LP EGR loops) on thermal efficiency and emissions of a diesel engine. Tests were conducted on a 12-L six-cylinder turbocharged diesel engine under various operating conditions. We found that at a low speed of 1100 r/min, 1 MPa BMEP, the LP EGR loop could achieve higher brake thermal efficiency and lower emissions than the HP EGR. This is because the lower enthalpy available at the turbine inlet of the HP EGR loop increased the fuel/oxygen equivalence ratio. For the HP EGR, the gross indicated thermal efficiency was reduced by 1%, but pumping losses were only reduced by 0.5%, compared to the LP EGR loop. At a higher speed of 1600 r/min, 1 MPa BMEP, the HP EGR loop attained a higher brake thermal efficiency and lower emissions because of the relatively sufficient flow through the turbocharger. For the HP EGR loop, the gross indicated thermal efficiency was only reduced by 0.5% and pumping losses were reduced by 1.5%, compared to the LP EGR loop. Lower fuel consumption and a longer ignition delay made the distribution of fuel/oxygen equivalence ratio more homogeneous, leading to lower emissions. Our data also showed that at the high speed of 1600 r/min, 0.55 MPa BMEP, the brake thermal efficiency of the HP EGR loop first increased, then decreased as the EGR rate increased. Therefore, under all conditions, a reasonable match of both EGR loops could achieve a good balance between fuel consumption and emissions of NO x and soot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号