共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
3.
BP神经网络结合遗传算法进行股市预测的研究 总被引:3,自引:0,他引:3
本文通过建立BP神经网络结合遗传算法的预测模型,对2004年上证指数进行了短期的预测。经过实例分析,本文建立的模型较好的模拟了股市的短期走势,在宏观环境没有发生大的变化的情况下,可以为投资者提供较好的参考依据。 相似文献
4.
基于遗传算法的模糊神经网络股市建模与预测 总被引:12,自引:1,他引:12
提出一种基于模糊神经网络的股票市场建模与预测方法,并采用遗传算法训练网络权值及模糊子集的划分,对于上证指数及个股的建模与预测结果表明,该方法具有很强的学习与泛化能力,在处理诸如股票市场上这种具有一定程度不确定性的非互性的建模与预测方面有很发的价值。 相似文献
5.
介绍了神经网络的基本概念,建立BP神经网络模型,以某个股实际收盘价为原始数据样本,对网络进行训练后,对股票价格进行了短期预测,并计算出预测值和实际值的误差.通过实验发现该模型收敛速度快,预测精度高. 相似文献
6.
7.
8.
9.
目前常用的物体识别方法,其过程非常复杂,信息量和计算量都很大.结合遗传算法的神经网络方法,充分利用GA的全局搜索能力、BP算法的局部搜索能力和鲁棒性强的特性,提出了一种用遗传算法全局优化神经网络拓扑结构和网络权值的新编码方案进行物体识别方法.仿真结果表明,该方法既解决了BP神经网络对初始权值敏感和容易局部收敛的问题,又加快GA.BP网络的收敛速度,提高收敛精度且识别率较高,从而验证了该方法的有效性. 相似文献
10.
11.
林婷婷 《计算技术与自动化》2022,41(1):79-81
基于sigmoid激活函数,建立了一种BP神经网络模型。通过对某高中2006年至2015年间的高考平均数据样本进行学习,修正了权值和阈值。系统最大相对误差为0.22%,关联度为0.6667,小误差概率为0.98,方差比为0.0002,预测结果精度为高。用于2016年至2020年间该校高考平均成绩的预测中发现,预测结果与实际结果的最大绝对误差仅为2分。对该校2021年的高考平均成绩进行了预测,最终预测结果为571分。 相似文献
12.
基于遗传神经网络的股票价格短期预测 总被引:10,自引:1,他引:10
该文在总结非线性时间序列预测模型的基础上,将遗传算法和人工神经网络相结合,提出了遗传神经网络模型。并将其应用到股票价格的短期预测。最后,针对仿真结果进行分析,该文得到的结果为平均相对误差小于0.086,实际值与预测值之间的相关系数大于0.91。结果表明该模型有较好的预测能力。 相似文献
13.
针对BP神经网络存在易陷入局部极小值、收敛速度慢等问题,提出用遗传算法优化BP神经网络并用于房价预测。采用BP神经网络建立房价预测模型。利用遗传算法对BP神经网络的初始权值和阈值进行优化。选取1998年2011年贵阳市的房价及其主要影响因素作为实验数据,分别对传统的BP神经网络和经过遗传算法优化后的BP神经网络进行训练和仿真实验,结果表明,与传统的BP神经网络预测模型相比,经过遗传算法优化后的BP神经网络预测模型能加快网络的收敛速度,提高房价的预测精度。 相似文献
14.
股票价格预测的建模与仿真研究 总被引:3,自引:0,他引:3
研究股票价格准确预测问题,由于股票价格数据具非线性、随机性等变化规律,同时股票市场与国内外经济政治变化有关,传统股票价格预测方法只能对其线性变化规律进行准确预测,无法反映股票价格非线性部分进行有效建模,导致股价预测精度不高。为了提高股票价格预测精度,提出了一种遗传优化BP神经网络的股票价格预测模型。充分利用BP神经网络良好的非线性映射能力,对股票价格变化规律进行建模,并通过遗传算法对BP神经网络模型参数进行优化,从而获最优股票价格最优预测模型。实验结果表明,相对于传统股票价格预测模型,遗传算法优化BP神经网络的股票价格预测模型拟合程度更好,预测精度更高,为股票价格预测提供了依据。 相似文献
15.
优化BP神经网络的可靠性预测模型 总被引:1,自引:0,他引:1
为了提供一种更加准确高效的算法,对传统的BP神经网络模型进行优化。首先对初始权植的选取规则,传统的N-W规则算法进行改进,再对其它参数进行优化。在此基础上,将神经网络理论应用于系统可靠预测评价之中,提出了基于此理论的系统可靠预测评价模型、实现方法和优点;评价实例证明此方法的可行性。 相似文献
16.
为了提供一种更加准确高效的算法,对传统的BP神经网络模型进行优化。首先对初始权植的选取规则,传统的N—W规则算法进行改进,再对其它参数进行优化。在此基础上,将神经网络理论应用于系统可靠预测评价之中,提出了基于此理论的系统可靠预测评价模型、实现方法和优点;评价实例证明此方法的可行性。 相似文献
17.
基于遗传神经网络的网格资源预测模型 总被引:1,自引:0,他引:1
研究网格资源预测问题,网格资源具有非线性、混沌变化特点,传统BP神经网络具有局部极小、收敛速度慢等缺陷,预测精度较低。为提高了网格资源预测精度,提出一种基于遗传神经网络的网格资源预测模型。利用遗传算法对BP神经网络的权值和阈值进行优化,然后采用BP神经网络对网格资源建立预测模型,最后采用网格资源时间序列进行有效性仿真。仿真结果表明,遗传神经网络有效地解决了传统BP神经网络的不足,提高了网格资源的预测精度,降低了预测误差,十分适合于非线性、混沌的网格资源时间序列预测。 相似文献
18.
基于遗传算法与BP神经网络的故障诊断模型 总被引:12,自引:0,他引:12
为了克服单独应用BP算法时存在的缺陷,利用遗传算法(GA)对其进行了改进,建立了基于遗传算法与BP神经网络相结合的诊断模型,此外在二进制编码方法的基础上,讨论了十进制的编码方法与实现以及网络模型参数取值与学习次数间的相互影响等关键问题。 相似文献
19.
为克服被控对象参数变化导致控制精度降低的问题,研究了一种BP神经网络模型预测控制算法。借助最小二乘递推算法在线预测系统模型参数,利用BP神经网络在线预测PID参数以控制被控对象。该算法基于模型预测,首先在线性系统中验证其控制效果,然后将非线性问题作线性处理,采用BP神经网络模型预测PID控制器予以实现控制非线性系统。仿真曲线显示BP神经网络PID控制器用于线性系统可达到高精度控制要求;对于非线性系统有自适应及逼近任意函数的能力。仿真研究表明,该算法与传统BP神经网络PID控制器相比,其自适应能力更强,稳定性更好,控制精度更高。 相似文献
20.
为了提高网络流量预测精度,提出一种基于遗传算法优化BP神经网络的网络流量预测模型(GA-BPNN)。首先采集网络流量数据,并进行相应预处理,然后将网络流量训练样本输入到BP神经网络进行学习,并采用遗传算法对BP神经网络参数进行优化,最后采用建立的网络流量预测模型对网络流量测试集进行预测,并通过仿真实验对模型性能进行测试。结果表明,GA-BPNN提高了网络流量的预测精度,获得比较理想的网络流量预测结果。 相似文献