首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In a previous report [Zúñiga, M.E., J. Concha, C. Soto, and R. Chamy, Effect of the Rose Hip (Rosa aff. rubiginosa) Oil Extraction Cold-Pressed Process, in Proceedings of the World Conference and Exhibition on Oilseed Processing, and Utilization, edited by R.F. Wilson, AOCS Press, Champaign, 2001, pp. 210–213], the authors showed that an enzymatic pretreatment of rose-hip seeds, prior to oil extraction by cold pressing, improves the oil yield. In this work, we studied the effects of temperature and moisture during the enzymatic hydrolysis stage using two previously selected mixtures of commercial enzymes: (i) Olivex (mainly pectinase) plus Cellubrix (mainly cellulase), and (ii) Finizym (mainly β-glucanase) plus Cellubrix (mainly cellulase) (all from Novozymes A/S, Madrid, Spain). In addition, we evaluated the effect of enzymatic hydrolysis on the oil extraction pressing rate at different operational pressures. Samples hydrolyzed enzymatically by either of the two commercial enzyme mixtures at 45°C and 30–40% moisture showed oil extraction yields up to 60%, an increase of greater than 50%, as compared with control samples in which the enzyme solutions were replaced by water. Both the oil extraction rate and yield by pressing increased when enzymatic pretreatment was applied. The oil extraction yield increased slightly when the operation pressure was elevated; however, when the sample was preheated, the oil extraction yield was greatly increased, especially for enzyme-treated samples. Results confirmed the importance of temperature and moisture as enzymatic hydrolysis parameters that improve rose-hip oil extraction yields in the cold-pressing process. When pressing was carried out after preheating enzymatically treated samples, it was possible to increase the oil extraction yield to 72% compared with the control without preheating, which resulted in a 46% oil yield.  相似文献   

2.
Dimorphotheca pluvialis is increasingly recognized as an interesting industrial new oilseed crop because it contains up to 60% of the unusual fatty acid dimorphecolic acid (9-hydroxy,10t,12t-18∶2) (DA) for which new applications are being developed. In this paper, the yield, composition and quality are evaluated for dimorphotheca oils (DMO) which were recovered by pressing, conventional solvent extraction and supercritical carbon dioxide extraction (SCE). Mechanical pressing of the seeds required high temperatures and resulted in an oil recovery of only 40%, whereas the extraction protocols yielded more than 95%. Oil recovery by pressing of winged seed was even more difficult than that of unwinged seeds; hence, solvent extraction of winged seeds was preferred. The dark-colored DMO, recovered by expelling or by extraction with organic solvents, needed further refining to remove pigments and gums, whereas the light yellow-colored SCE DMO did not require further refining. SCE oil had a low phospholipid content (11 mg P/kg). Pressed oil (95 mg P/kg) and hexaneor pentane-extracted DMO (200 mgP/kg) had much higher phospholipid contents. Peroxide andp-anisidine values were low for freshly recovered oils, but increased after storage, especially in the SCE oil, due to the low concentration of natural antioxidants in SCE DMO, such as tocopherols. The DA content of the oils recovered by the various techniques showed only minor differences, except that supercritical carbon dioxide had slightly decreased solubilizing power for tri- and di-dimorphecolin as compared to hexane and pentane.  相似文献   

3.
Chilean hazelnut (Gevuina avellana) oil is highly appreciated in the cosmetic and pharmaceutical industries. Hazelnut oil (oil content calculated on 49% dry basis) is traditionally obtained by pressing, a low-efficiency process that results in a low-quality product. In this work, the conventional process was compared with two enzymatic alternatives in which commercial enzymes were used to increase the oil extraction yield: (i) extraction in aqueous medium and (ii) extraction by pressing after an enzymatic treatment. The effect of various parameters on the extraction yield was studied to define the most satisfactory processing conditions. These included reaction time, temperature, enzyme concentration, and, in the aqueous medium extraction process, the water/seed ratio, particle size, and pH. Although pressing is the better alternative, in both processes enzyme treatment improved extraction yields (94 and 98% for aqueous medium extraction and pressing after enzyme treatment, respectively, compared to 52% obtained in the conventional process). Moreover, the quality of the oil obtained is the same as or better than that of oil obtained by the conventional process.  相似文献   

4.
A bench-scale aqueous enzymatic method was developed to extract corn oil from corn germ from either a commercial corn dry mill or corn germ from a newly-developed experimental enzymatic wet milling process (E-Germ). With both types of germs, no oil was extracted when acidic cellulase was the only enzyme used. Pre-treating dry milled corn germ by heating it in boiling water or microwave pretreatment, followed by enzymatic extraction with the acidic cellulase resulted in oil yields of about 43% and 57%, respectively. A two-step process, combining both acidic cellulase and alkaline protease treatments, with no heat pretreatment, achieved oil yields of 50–65% from dry milled corn germ and 80–90% from E-Germ. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

5.
The seeds of wild almond, Amygdalus scoparia, contain a relatively high quantity of oil. In the current study, aqueous enzymatic extraction of the oil from Iranian wild almond was investigated using a protease and a cellulase to assist the extraction process. The effects of temperature, incubation time and pH on the oil recovery were evaluated using Box?Behnken design from response surface methodology (RSM). A 77.3 % recovery was predicted for oil using aqueous enzymatic extraction procedure at the optimized conditions of RSM (pH 5.76; 50 °C/5 h) when both enzymes were used at 1.0 % level (v/w). In practice, when both enzymes were used, a maximum of 77.8 % oil recovery was achieved at pH 5; 50 °C/4 h. Fatty acid profile, refractive index and saponification value of the aqueous enzymatic extracted oil in the current study were similar to those of the oil extracted with hexane. However, acid value, unsaponifiable matter and p‐anisidine value were higher when compared to those with hexane extracted oil. Peroxide value of the aqueous enzymatic oil was lower than that of oil extracted by hexane. Aqueous enzymatic extraction can be suggested as an environmentally‐friendly method to obtain oil from wild almond.  相似文献   

6.
Vernonia galamensis seed containing 40–42% oil and 30–34% epoxy acid, (cis-12,13-epoxy-cis-9-octadecenoic) was processed to oil and meal. Seed conditioning, pressing and solvent extraction research were conducted in pilot facilities at the French Oil Mill Machinery Co. (Piqua, OH). The robust lipase system was successfully inactivated by treating 200 lb. batches ofV. galamensis seed in a cooker/conditioner at 195–200°F and >10% moisture. Conditioned seed was mechanically pressed and the press discharge cone setting was varied during operation from 1/32″ to 3/32″ to demonstrate the feasibility of both full pressing and prepressing. Prepressing successfully reduced oil level in the press cake to ca. 20%. Press cake was extracted with hexane in a 1.5-ft3 batch-type, four-stage percolation unit with a 6″ square extraction cross section. Solvent extraction reduced oil level in the defatted meal to 1–2%. The defatted meal was desolventized and toasted. Excessive foaming of the vernonia oil extract made complete solvent stripping in the oil stripping unit difficult.  相似文献   

7.
The unsaturated fatty acyl moieties of TAG present in natural oils of borage, olive, and rice were converted to their corresponding geometrical trans isomers by thiyl radical-catalyzed isomerization. Thiyl radicals were generated from 2-mercaptoethanol under photolytic or thermal conditions. A relevant feature of this method is the absence of double-bond shifts, so that no positional trans isomers or conjugated polyenes are formed. Oils obtained after the isomerization were winterized to further increase their trans fatty acid content. Methanolysis and hydrolysis of the trans oil mixtures using an enzymatic method (lipase B from Candida antarctica) gave good conversions to the corresponding trans FAME and fatty acids, respectively. These results are relevant for the studies of lipid isomerism and trans fatty acid recognition, which is a growing concern in biochemistry and nutrition, and open new perspectives for the synthesis of glycerides and studies of their structure-activity relationships.  相似文献   

8.
Multi‐enzymatic catalysis combined with acid hydrolysis is studied in order to enhance the efficiency of the enzymatic catalysis and reduce the mass transfer resistance from starch and cellulose in the extraction of diosgenin from Dioscorea zingiberensis C. H. Wright. The cellulase is modified by polyethylene to increase its optimal reaction temperature and pH value. The modified cellulase shows better thermostability and resistance to alkali. The modified cellulase, α‐amylase and β‐glycosidase are used to construct the multi‐enzyme and multi‐enzyme catalysis is used as a pretreatment process. Compared to primary industrial techniques including acid hydrolysis, spontaneous fermentation and enzymatic catalysis, conventional techniques are optimized by using multi‐enzymatic catalysis together with acid hydrolysis because of the higher reaction efficiency and lower levels of manipulation required. The purity of the product is more than 96 % with this technique, and the melting point is 205–207 °C. The diosgenin yield rate and the extraction rate reached are 2.43 % and 98 %, respectively. IR and 1H NMR spectroscopy were used to confirm the structure of the product.  相似文献   

9.
High-temperature pretreatment that is currently used in camellia oil extraction can have negative effects on the quality of camellia oil. In this study, the enzymatic pretreatment of camellia seeds is explored as an alternative to high-temperature pretreatment. The main conditions for enzymatic pretreatment of camellia seeds including enzyme, pH, temperature, time, and buffer solution are optimized using the response surface methodology. Under the optimal conditions of enzymatic pretreatment, the oil recovery is close to 75%. Moreover, residual oil recovery from camellia seeds subjected to 1398 neutral protease pretreatment (4 g per kg seeds) and high-temperature pretreatment are 5.62 ± 0.08% and 9.97 ± 0.18%, respectively. The enzymatic pretreatment is further applied to pre-pressing solvent extraction of camellia oil, the cake oil recovery from camellia seeds subjected to enzymatic pretreatment is higher than that from high-temperature pretreatment. These results show that enzymatic pretreatment of camellia seeds has potential for application in the oil industry. Practical Applications : This study suggests that enzymatic pretreatment can replace high-temperature pretreatment and improve oil recovery and oil quality. Ultimately, this method can be used to extract camellia oil.  相似文献   

10.
The yield and fatty acid (FA) composition of the oil obtained from the seeds of a semi‐oriental tobacco (Nicotiana tabacum L.) plant, type Otlja, by various recovery techniques, which are: Soxhlet extraction (SE), maceration (ME), indirect and direct ultrasonic extraction (IUE and DUE, respectively) and cold pressing (CP), were compared. The solvent extractions of ground tobacco seeds (TS) were carried out by n‐hexane, while CP was used to recover the oil from the TS. The highest oil yield (32.9 g/100 g, i.e. 93% of the oil content in the seeds) was achieved by CP. Ultrasonically assisted solvent extractions appear to be inefficient in recovering the oil from the ground TS, as the oil yields were only 45–55% of the oil content, depending on the extraction conditions. Independently of the technique applied, linoleic acid was the major FA of the tobacco seed oil (TSO). The compositions of the TSO extracted by SE, ME, IUE and CP were very similar to each other, and the composition of the TSO recovered by DUE depended on the ultrasonic power input. The content of linoleic acid was reduced, while the content of saturated FA was increased by increasing the ultrasonic power from 5 to 50 W.  相似文献   

11.
A mixture of all-trans-retinoic acid and iodine in heptane was irradiated. Two oxidation products were isolated by high performance liquid chromatography and identified as all-trans- and 13-cis-4-oxoretinoic acid by nuclear magnetic reasonance, ultra violet, Infrared spectroscopy, and mass spectral analysis. Under the same conditions, but without light, a mixture of all-trans- and 13-cis-retinoic acid resulted. The corresponding methyl esters were obtained when methyl all-trans-retinoate was used in place of all-trans-retinoic acid.  相似文献   

12.
An aqueous-enzymatic extraction process of plum kernel oil was investigated on a laboratory scale, varying several processing parameters, with main emphasis on the oil yield. Efficient recovery of oil was related to three operations: pretreatment, enzymatic reaction and separation of oil. Maximum oil yield of about 70% (estimated by the Soxhlet method) was obtained at an enzyme concentration of 0.5%, extraction temperature of 45°C, pH 4.5, treatment time of 1 h and dilution ratio of 1:4. The aqueous-enzymatic extraction did not have any determining effect on the fatty acid composition, tocopherol composition, iodine value and saponification value. The free fatty acid content was higher, while the phosphatide content and peroxide value were lower in the oil extracted by the aqueous-enzymatic process as compared to the Soxhlet extracted samples.  相似文献   

13.
An investigation on enzymatic pretreatment for n-hexane extraction of oil from the Silybum marianum seeds was conducted. The optimum combination of extraction parameters was obtained with the response surface methodology (RSM) at a four-variable and five-level central composite design (CCD). The optimum parameters of enzymatic pretreatment were as follows: enzyme concentration of 2.0% (w/w), temperature of 42.8 °C, reaction time of 5.6 h, and pH of 4.8. After enzymatic pretreatment, the oil was extracted by n-hexane for 1.5 h, and the oil yield on a dry basis was 45.70%, which well matched with the predicted value (45.86%). The results of the effects of the enzymatic pretreatment for n-hexane extraction of oil from the aspects of oil yield, microstructure and the fatty acid compositions showed that the enzymatic pretreatment had not affected on the fatty acid compositions, but could cause structure breakage of the S. marianum seeds and accelerate releasing extra oil, which increased the oil yield by 10.46% compared with n-hexane extraction for 1.5 h without enzymatic pretreatment, and confirmed the efficacy of enzymatic pretreatment for n-hexane extraction of oil from the S. marianum seeds.  相似文献   

14.
The main goal of this work is to evaluate the extraction of sunflower oil from enzyme-treated collets using ethanol and isopropanol (IPA) as solvents. The sunflower collets are pretreated with the multienzyme complex Viscozyme L prior to solvent extraction by the Soxhlet method. The influence of the moisture content of the collets, pretreatment, processing time, and solvent type on the amount of total extracted material and the oil extraction efficiency is studied. Some quality parameters such as phospholipid content of the oil and chlorogenic acid content of the residual meal are also analyzed. At low moisture content (7%) the solvents exhibit similar oil extraction ability (98–99%), but with increasing moisture the extraction efficiency of ethanol decreases to about 85%, while no significant differences are observed for IPA. The enzymatic treatment increases the extraction efficiency for all times, especially for ethanol. It is observed that IPA is more efficient in the extraction compared to ethanol, and the amount of nonlipid material is reduced by ≈70%. In addition, the oil extracted with IPA have lower phospholipid content and the residual meal presents a higher chlorogenic acid content. Practical Applications:This work would contribute toward the use of green solvents in the extraction of sunflower oil from collets. Ethanol and isopropanol, used as solvents, present attractive advantages, including low toxicity, good operational security, as well as being obtained from a renewable source. The obtained data provide up-to-date information on the use of these alcohols in the extraction of sunflower oil from collets and the influence of operating conditions, such as moisture content, enzymatic pretreatment of the collets, and the extraction time. Information about oil and meal quality is also reported.  相似文献   

15.
Bakery shortenings prepared by hydrogenation contain high levels of trans fatty acids, which are considered to be risk factors for cardiovascular disease. The shortenings prepared from maogo kernel and mahua fats have no trans fatty acids. Mahua fat was fractionated by dry fractionation to obtain a high-melting fraction (10% yield, Mh1). Mango fat was fractionated by two-stage solvent fractionation, separating about 15% high-melting fraction (Mk1) in the first stage, followed by 40% stearin (Mk2) in the second stage. The formulation containing 80% Mh1 and 20% of mango middle stearin fraction (Mk2) showed melting characteristics and onset and enthalpy of crystallization similar to those of commercial hydrogenated shortenings designed for cakes and biscuits. The formulation suitable for puff pastry shortening was prepared by blending 50% mango 1st stearin (Mk1) and 50% mahua fat with addition of 5–7% of fully hydrogenated vegetable oil. The formulations having melting characteristics similar to those of commercial cake and biscuit shortenings were also prepared by blending 40% mango fat and 60% mahua fat with 5–7% incorporation of fully hydrogenated peanut oil. However, these formulations showed delayed transition to the stable forms compared to those of commercial samples. Fatty acid composition revealed that commercial hydrogenated shortenings consisted of 18–29% trans oleic acid, whereas the formulations we prepared did not contain any trans acids. The iodine values of commercial samples were 57–58, whereas the value for the formulations prepared were 47–53. The consistency of the prepared samples as measured by cone penetrometer was slightly harder than commercial samples. These studies showed that it is possible to prepare bakery shortenings with no trans fatty acids by using mango and mahua fats and their fractions.  相似文献   

16.
The synthesis of structured triacylglycerols (TAG) by the enzymatic reaction between sn-1,3-diacylglycerols (sn-1,3-DAG) and conjugated linoleic acid (CLA) isomers was studied. Both the substrates of the reaction were produced from vegetable oils, the sn-1,3-DAG from extra virgin olive oil and the CLA isomers from sunflower oil. The enzymatic reactions between these substrates were catalyzed for 96 h by an immobilized lipase from Rhizomucor miehei (Lipozyme IM) and the reactions carried out in solvent were monitored every 24 h by using high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD). The enzymatic reactions were carried out in different reaction media (hexane, isooctane and solvent free) and with different CLA/sn-1,3-DAG ratios. Total % acidic composition and structural analysis data were evaluated to verify the presence of CLA isomers in sn-2- position of synthesized TAG. The results showed good levels of CLA incorporation in sn-1,3-DAG, from 19.2% of TAG synthesized in solvent free conditions with a 0.5:1 substrate ratio, to 47.5% of TAG synthesized in isooctane with a 2:1 substrate ratio. It was observed that for all the reaction media, the best sn-2- acylic specificity was obtained with a 0.5:1 substrate ratio.  相似文献   

17.
The present research deals with the chemical esterification of the sn-2- position of sn-1,3-diacylglycerol (sn-1,3-DAG) with 9cis,11trans (c9,t11) and 10trans,12cis (t10,c12) conjugated linoleic acid (CLA) isomers to obtain structured triacylglycerols (TAG); the sn-1,3-DAG substrates were produced from extra virgin olive oil by means of enzymatic reactions while CLA isomers were obtained using a three-step procedure based on alkaline hydrolysis of sunflower oil, urea purification of linoleic acid (LA) and alkaline isomerization of LA. The results showed good levels of CLA incorporation in structured TAG at the tested temperatures: 37.5% at 4 °C and 39.1% at 14 °C. To evaluate the incorporation of CLA isomers in sn-2- position of sn-1,3-DAG structural analysis of the newly synthesized TAG was carried out using an enzymatic and a chemical method. The results of the structural analysis also showed up the occurrence of acyl migration. The pancreatic lipase method allowed the direct determination of the fatty acid composition of TAG sn-2- position but this enzymatic method showed different results (p < 0.05) in respect to the chemical one; this occurrence could be due to an acylic specificity of the lipase. High incorporation of CLA isomers in sn-2- position of TAG was observed, 77.0% at 4 °C and 81.5% at 14 °C, considering the results of the chemical procedure.  相似文献   

18.
Kinetics of the formation of trans linoleic acid and trans linolenic acid were compared. Pilot plant-scale tests on canola oils were carried out to validate the laboratory-scale kinetic model of geometrical isomerization of polyunsaturated fatty acids described in our earlier publication. The reliability of the model was confirmed by statistical calculations. Formation of the individual trans linoleic and linolenic acids was studied, as well as the effect of the degree of isomerization on the distribution of the trans fatty acid isomers. Oil samples were deodorized at temperatures from 204 to 230°C from 2 to 86 h. Results showed an increase in the relative percentage of isomerized linolenic and linoleic acid with an increase in either the deodorization time or the temperature. The percentage of trans linoleic acid (compared to the total) after deodorization ranged from <1 to nearly 6%, whereas the percentage of trans linolenic acid ranged from <1 to >65%. Applying this model, the researchers determined the conditions required to produce a specially isomerized oil for a nutritional study. The practical applications of these trials are as follows: (i) the trans fatty acid level of refined oils can be predicted for given deodorization conditions, (ii) the conditions to meet increasingly strict consumer demands concerning the trans isomer content can be calculated, and (iii) the deodorizer design can be characterized by the deviation from the theoretical trans fatty acid content of the deodorized oil.  相似文献   

19.
An attenuated total reflection infrared spectroscopy procedure was collaboratively studied among two sets of five laboratories for quantitating the total trans fatty acid levels in neat (without solvent) hydrogenated vegetable oils, measured as triacylglycerols in one study, and as fatty acid methyl ester derivatives in the other. Unlike the fatty acid methyl esters, the triacylglycerols required no derivatization but had to be melted prior to measurement. To obtain a symmetric absorption band at 966 cm−1 on a horizontal background, the single-beam spectrum of the trans-containing fat was "ratioed" against that of a refined oil or a reference material that contained only cis double bonds. A single-bounce horizontal attenuated total reflection cell that requires 50 μL of undiluted test samples was used for oils, melted fats, or their methyl esters. For fatty acid methyl esters, the reproducibility relative standard deviations were in the range of 0.9 to 18.46% for 39.08 to 3.41% trans, determined as methyl elaidate per total fatty acid methyl esters. For five pairs of triacylglycerol blind duplicates, the reproducibility and repeatability relative standard deviations were in the ranges of 1.62 to 18.97%, and 1.52 to 13.26%, respectively, for 39.12 to 1.95% trans, determined as trielaidin per total triacylglycerols. Six pairs of spiked triacylglycerol blind duplicates (quality assurance standards) exhibited high accuracy in the range of 0.53 to 40.69% trans and averaged a low bias of 1.3%. These statistical analysis results were compared to those collaboratively obtained by the recently adopted AOCS Cd14-95 and AOAC 994.34 Infrared Official Methods.  相似文献   

20.
This work focused on physicochemical property assaying, fatty acid composition, triacylglycerol (TAG) profiles, and unsaponifiable matter composition of the Chinese Moringa oleifera seed oil. The results indicated that there was no significant difference in approximate nutritional components between M. oleifera seeds from China and India, while variations in the mineral element contents are significant. Both the Soxhlet extraction method and the aqueous enzymatic extraction method were adopted to extract oil from Chinese M. oleifera seeds. Oil yield obtained using the Soxhlet extraction method was higher than that obtained using the aqueous enzymatic extraction method. While both the iodine value and unsaponifiable matter content of the aqueous enzymatic extracted oil were a little higher than that of the Soxhlet extracted oil. Both oils possess a very low acid value and peroxide value, suggesting their good quality as edible oil. Fatty acid composition results indicated that this oil was especially high in oleic acid. Characterization of the TAG composition was achieved by a two-dimensional high-performance liquid chromatography (HPLC) coupling of nonaqueous reverse-phase and silver ion HPLC with the atmospheric pressure chemical ionization mass spectrometry method. A total of 22 TAG including 16 regioisomers were determined. Composition results of unsaponifiable matters revealed that this oil possesses a number of phytosterols, in which β-sitosterol and stigmasterol are most predominant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号