首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Bombesin stimulation of inositol 1,4,5-trisphosphate (Ins P3) formation in rat sonicated pancreatic acinar cells was inhibited by an antibody directed against the pertussis toxin (PTX)-sensitive GTP-binding G alpha i3 protein but not by an anti-G alpha q-11 antibody. After solubilization and gel filtration, [125I-Tyr4]bombesin binding sites were recovered in a peak of protein of 67 approximately 90 kDa with a maximal enrichment corresponding to a molecular mass of 83-kDa. Results obtained from the non-hydrolysable GTP analog guanosine-5'-[gamma-thio]triphosphate (GTP gamma S) binding, PTX-stimulated ADP-ribosylation and immunoblotting showed that the 83-kDa fraction contained the G alpha i3 protein but not the G alpha q-11 protein. Furthermore, GTP gamma S increased the bombesin binding dissociation constant (KD) from 0.32 to 0.60 nM, while the anti-G alpha i3 antibody decreased the maximal binding capacity (Bmax) from 50 to 25 fmol/mg protein without affecting the KD. Mixing solubilized bombesin binding sites with a phospholipase C (PLC) preparation from rat pancreas reconstituted a bombesin-stimulated PLC activity which was markedly inhibited by the anti-G alpha i3 antibody but unaffected by the anti-G alpha q-11 antibody. In addition, this stimulation was inhibited by an anti-PLC beta 1 antibody. This result supports the involvement of the PLC beta 1 isoform in bombesin receptor activation.  相似文献   

2.
Although the G protein betagamma dimer is an important mediator in cell signaling, the mechanisms regulating its activity have not been widely investigated. The gamma12 subunit is a known substrate for protein kinase C, suggesting phosphorylation as a potential regulatory mechanism. Therefore, recombinant beta1 gamma12 dimers were overexpressed using the baculovirus/Sf9 insect cell system, purified, and phosphorylated stoichiometrically with protein kinase C alpha. Their ability to support coupling of the Gi1 alpha subunit to the A1 adenosine receptor and to activate type II adenylyl cyclase or phospholipase C-beta was examined. Phosphorylation of the beta1 gamma12 dimer increased its potency in the receptor coupling assay from 6.4 to 1 nM, changed the Kact for stimulation of type II adenylyl cyclase from 14 to 37 nM, and decreased its maximal efficacy by 50%. In contrast, phosphorylation of the dimer had no effect on its ability to activate phospholipase C-beta. The native beta1gamma10 dimer, which has 4 similar amino acids in the phosphorylation site at the N terminus, was not phosphorylated by protein kinase C alpha. Creation of a phosphorylation site in the N terminus of the protein (Gly4 --> Lys) resulted in a beta1 gamma10G4K dimer which could be phosphorylated. The activities of this beta gamma dimer were similar to those of the phosphorylated beta1 gamma12 dimer. Thus, phosphorylation of the beta1 gamma12 dimer on the gamma subunit with protein kinase C alpha regulates its activity in an effector-specific fashion. Because the gamma12 subunit is widely expressed, phosphorylation may be an important mechanism for integration of the multiple signals generated by receptor activation.  相似文献   

3.
We have previously reported that gastrin induces a rapid and transient tyrosine phosphorylation of phospholipase C gamma 1 (PLC gamma 1) in association with inositol 1,4,5-trisphosphate (IP3) formation in rat colonic epithelial cells (34). In this study, we demonstrate that gastrin regulates IP3 formation mainly through PLC gamma 1 isozyme. Immunoblotting analysis revealed the expression of PLC beta 3 and -gamma 1, but not PLC beta 1, -beta 2, or -beta 4 in the rat colonic epitheliums. To explore what PLC isozyme(s) modulates gastrin effect on IP3, immunoneutralizing antibody to PLC beta 1, -beta 3, or -gamma 1 was introduced into the colonic cells using a lipid carrier. The gastrin-stimulated increase in IP3 concentration was specifically prevented by anti-PLC gamma 1 but not by anti-PLC beta 1 or -beta 3 antibody. Immunoprecipitation assays have also revealed that gastrin promoted an increase in tyrosine phosphorylation and co-precipitation of a 60 kDa src kinase with PLC gamma 1. Administration of antibody specific to pp60c-src into the colonic cells prevented the gastrin-stimulated increases in IP3. Tyrosine phosphorylation of PLC gamma 1 may be a major mechanism through which gastrin regulates IP3 level in the colonic cells. Pretreatment of cells with the tyrosine kinase inhibitor genistein abrogated gastrin's effect on IP3, while extended pretreatment with pertussis toxin, a G-protein inhibitor, did not affect the ability of gastrin to stimulate IP3 formation. Colonic cells expressed the G alpha i subunits1-3; however, immunoblotting analysis did not reveal any difference in G alpha i proteins' expression between control and gastrin treated cells. The results provide direct evidence that gastrin regulates IP3 level by a signaling mechanism that involves PLC gamma 1 and pp60c-src kinase.  相似文献   

4.
Signal transduction through integrin molecules expressed on platelets and nonlymphoid cells involves activation of the intracellular focal adhesion kinase ppI25FAK (FAK) to phosphorylate substrate proteins on tyrosine residues. Similar mechanisms are also functional in T-lymphocytes through the beta 1-integrin VLA-4. A putative FAK-related phosphoprotein (fakB) was identified that is responsive to intracellular signals induced through ligation of antigen receptors on both T- and B-lymphocytes, and whose induced tyrosine phosphorylation is augmented by TCR costimulation through the adhesion/costimulatory receptors CD2 and CD4. In this report, fakB is shown to respond to extracellular signals through the beta 2-integrin LFA-1 in the absence of primary signals through the TCR. Protein-protein complex formation was observed involving an association between fakB, phospholipase C gamma 1 (PLC gamma 1), and the tyrosine phosphoprotein pp35-36. Evidence is provided here that fakB interacts with PLC gamma 1 through its SH3 domain. The association between fakB and PLC gamma 1 does not appear to require T-cell activation, whereas the induced tyrosine phosphorylation of the protein complex components occurs following engagement of LFA-1. These data indicate that the beta2-integrin LFA-1 expressed on T-lymphocytes stimulates a novel, FAK-related molecule that may function in the interplay between adhesion receptors and intracellular signaling enzymes responsible for downstream second messenger generation.  相似文献   

5.
TCR engagement activates phospholipase C gamma 1 (PLC gamma 1) via a tyrosine phosphorylation-dependent mechanism. PLC gamma 1 contains a pair of Src homology 2 (SH2) domains whose function is that of promoting protein interactions by binding phosphorylated tyrosine and adjacent amino acids. The role of the PLC gamma 1 SH2 domains in PLC gamma 1 phosphorylation was explored by mutational analysis of an epitope-tagged protein transiently expressed in Jurkat T cells. Mutation of the amino-terminal SH2 domain (SH2(N) domain) resulted in defective tyrosine phosphorylation of PLC gamma 1 in response to TCR/CD3 perturbation. In addition, the PLC gamma 1 SH2(N) domain mutant failed to associate with Grb2 and a 36- to 38-kDa phosphoprotein (p36-38), which has previously been recognized to interact with PLC gamma 1, Grb2, and other molecules involved in TCR signal transduction. Conversely, mutation of the carboxyl-terminal SH2 domain (SH2(C) domain) did not affect TCR-induced tyrosine phosphorylation of PLC gamma 1. Furthermore, binding of p36-38 to PLC gamma 1 was not abrogated by mutations of the SH2(C) domain. In contrast to TCR/CD3 ligation, treatment of cells with pervanadate induced tyrosine phosphorylation of either PLC gamma 1 SH2(N) or SH2(C) domain mutants to a level comparable with that of the wild-type protein, indicating that pervanadate treatment induces an alternate mechanism of PLC gamma 1 phosphorylation. These data indicate that the SH2(N) domain is required for TCR-induced PLC gamma 1 phosphorylation, presumably by participating in the formation of a complex that promotes the association of PLC gamma 1 with a tyrosine kinase.  相似文献   

6.
We have identified two tyrosine phosphorylation sites, Tyr 1009 and Tyr 1021, in the C-terminal noncatalytic region of the human platelet-derived growth factor (PDGF) receptor beta subunit. Mutant receptors with phenylalanine substitutions at either or both of these tyrosines were expressed in dog epithelial cells. Mutation of Tyr 1021 markedly reduced the PDGF-stimulated binding of phospholipase C (PLC) gamma 1 but had no effect on binding of the GTPase activator protein of Ras or of phosphatidylinositol 3 kinase. Mutation of Tyr 1009 reduced binding of PLC gamma 1 less severely. Mutation of Tyr 1021, or both Tyr 1009 and Tyr 1021, also reduced the PDGF-dependent binding of a transiently expressed fusion protein containing the two Src-homology 2 domains from PLC gamma 1. Mutation of Tyr 1021, or both Tyr 1009 and Tyr 1021, greatly reduced PDGF-stimulated tyrosine phosphorylation of PLC gamma 1 but did not prevent the tyrosine phosphorylation of other cell proteins, including mitogen-activated protein kinase. We conclude that Tyr 1021, and possibly Tyr 1009, is a binding site for PLC gamma 1.  相似文献   

7.
8.
Interaction of calcitonin gene-related peptide (CGRP) with its receptors leads to stimulation of adenylyl cyclase and/or phospholipase C (PLC). While regulation of adenylyl cyclase is thought to involve the G-protein Gs, it is not known whether activation of PLC results from coupling the receptor to Gq family proteins or whether beta gamma subunits released from receptor-activated Gs activate PLC. We used human bone cells OHS-4 bearing CGRP receptors in which CGRP activates only the PLC signaling pathway to determine how CGRP acts. CGRP increased the concentration of intracellular calcium ([Ca2+]i) within 5 s via a Ca2+ influx through voltage-gated calcium channels and by mobilizing calcium from the endoplasmic reticulum. The activation of effectors, like PLC coupled to G-proteins, is the early event in the pathway leading to inositol 1,4,5-trisphosphate formation, which is responsible for Ca2+ mobilization. Western blotting demonstrated a range of PLC-beta isoforms (beta1, beta3, beta4, but not beta2) and G-proteins (Galphaq/11 and Galphas). Only phospholipase C-beta1 is involved in the mobilization of Ca2+ from the endoplasmic reticulum of Fura-2-loaded confluent OHS-4 cells and the formation of inositol 1,4,5-trisphosphate by CGRP; PLC-gamma have no effect. Activation of PLC-beta1 by CGRP involves the Galphaq/11 subunit, which is insensitive to pertussis toxin, but not Gbeta gamma subunits. We therefore believe that CGRP causes the activation of two separate G-proteins.  相似文献   

9.
The epidermal growth factor (EGF) receptor is a transmembrane protein that binds EGF and transforming growth factor alpha (TGF alpha), and that stimulates phospholipase C gamma 1 (PLC gamma 1) activity. In this study the role of the EGF receptor in chronic pancreatitis was studied. By immunohistochemistry, the EGF receptor, TGF alpha, and PLC gamma 1 were found to be expressed at high concentrations in pancreatic ductal and acinar cells from chronic pancreatitis patients. Northern blot analysis showed that, by comparison with normal controls, 19 of 27 chronic pancreatitis tissues exhibited a 5.7-fold increase in EGF receptor mRNA concentrations, and 20 of 27 chronic pancreatitis tissues exhibited a sixfold increase in TGF alpha mRNA concentrations. In situ hybridisation confirmed that overexpression occurred in ductal and acinar cells, and showed that both mRNA moieties colocalised with their respective proteins. These findings suggest that TGF alpha may act through autocrine and paracrine mechanisms to excessively activate the overexpressed EGF receptor in the two major cell types of the exocrine pancreas, thereby contributing to the pathobiology of this disorder.  相似文献   

10.
G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied G protein-coupled receptors (GPCRs), resulting in GPCR desensitization. GRK2 is one of the better studied of the six known GRKs and phosphorylates several GPCRs. In a previous study, we documented that GRK2 and GRK3 phosphorylate purified and reconstituted rat substance P receptor (rSPR) [Kwatra et al. (1993) J. Biol. Chem. 268, 9161-9164]. Here, we characterize in detail GRK2-catalyzed phosphorylation of human SPR (hSPR) in intact membranes. GRK2 phosphorylates hSPR in urea-washed Sf9 membranes in an agonist-dependent manner with a stoichiometry of 19 +/- 1 mol of phosphate/mol of receptor, which increases slightly (1.3-fold increase) in the presence of G beta gamma. Kinetic analyses indicate that receptor phosphorylation occurs with a Km of 6.3 +/- 0.4 nM and a Vmax of 1.8 +/- 0.1 nmol/min/mg; these kinetic parameters are only slightly affected by G beta gamma [Km = 3.6 +/- 1.0 nM and Vmax = 2.2 +/- 0.2 nmol/min/mg]. The lack of a strong stimulatory effect of G beta gamma on GRK2-catalyzed phosphorylation of hSPR is surprising since G beta gamma potently stimulates GRK2-catalyzed phosphorylation of beta 2-adrenergic receptor and rhodopsin. Involvement of G beta gamma endogenously present in membranes is ruled out as a source of high levels of hSPR phosphorylation, since receptor phosphorylation was not affected by guanine nucleotides that suppress or enhance the release of endogenous G beta gamma. The present study determines, for the first time, the kinetics of phosphorylation of a receptor substrate of GRK2 in intact membranes. Further, our results identify hSPR as a unique substrate of GRK2 whose phosphorylation is strong even in the absence of G beta gamma.  相似文献   

11.
To delineate the specific regions of phospholipase C beta2 (PLC beta2) involved in binding and activation by G protein betagamma subunits, we synthesized peptides corresponding to segments of PLC beta2. Two overlapping peptides corresponding to Asn-564-Lys-583 (N20K) and Glu-574-Lys-593 (E20K) inhibited the activation of PLC beta2 by betagamma subunits (IC50 50 and 150 microM, respectively), whereas two control peptides did not. N20K and E20K, but not the control peptides, inhibited betagamma-dependent ADP-ribosylation of Galphai1 by pertussis toxin and betagamma-dependent activation of phosphoinositide 3-kinase. To demonstrate direct binding of the peptides to betagamma subunits, the peptides were chemically cross-linked to purified beta1gamma2. N20K and E20K cross-linked to both beta1 and gamma2 subunits, whereas the control peptides did not. Cross-linking to beta and gamma was inhibited by incubation with excess PLC beta2 or PLC beta3, whereas cross-linking to gamma but not beta was inhibited by r-myr-alphai1. These data together demonstrate specificity of N20K and E20K for G betagamma binding and inhibition of effector activation by betagamma subunits. The results suggest that an overlapping region of the two active peptides, Glu-574-Lys-583, mimics a region of PLC beta2 that is involved in binding to betagamma subunits. Changing a tyrosine to a glutamine in this overlapping region of the peptides inhibited binding of the peptide to betagamma subunits. Alignment of these peptides with the three-dimensional structure from PLC delta1 identifies a putative alpha helical region on the surface of the catalytic domain of PLC beta2 that could interact with betagamma subunits.  相似文献   

12.
We have shown that estrogens and calcitriol, the hormonally active form of vitamin D, increase the concentration of intracellular calcium ([Ca2+]i) within 5 s by mobilizing calcium from the endoplasmic reticulum and the formation of inositol 1,4, 5-trisphosphate and diacylglycerol. Because the activation of effectors as phospholipase C (PLC) coupled to G-proteins is the early event in the signal transduction pathway leading to the inositol 1,4,5-trisphosphate formation and to [Ca2+]i increase, we described different PLC isoforms (beta1, beta2, gamma1, and gamma2, but not beta4) in female rat osteoblasts using Western immunoblotting. The data showed that phospholipase C beta was involved in the mobilization of Ca2+ from the endoplasmic reticulum of Fura-2-loaded confluent osteoblasts by calcitriol and 17beta estradiol, and PLC gamma was ineffective. The data also showed that only a PLC beta1 linked to a Pertussis toxin-insensitive G-protein and a PLC beta2 coupled to a Pertussis toxin-sensitive G-protein are involved in the effects of calcitriol and 17beta estradiol on the mobilization of Ca2+ from intracellular Ca2+ stores. In conclusion, these results may be an important step toward understanding membrane effects of these steroids and may be an additional argument in favor of membrane receptors to steroid hormones.  相似文献   

13.
Phosphatidylinositol-specific phospholipase C (PLC) activity reflects a summation of the activities of three families, beta, gamma, and delta, each of which is regulated differently. In order to understand the contribution of each family to cell proliferation signaling, expression of each family was suppressed by use of an inducible expression vector for antisense PLC sequences in a single cell line, FTO-2B rat hepatocytes. Activation of second messengers of PLC [diacylglycerol (DAG) and inositol 1,4,5-tris(phosphate) (IP3)] was dramatically reduced, providing a strategy for probing the consequences of PLC deficiency on cell function. Importantly, while one PLC family was suppressed, the other PLCs actively responded to specific stimuli, suggesting parallel and independent signaling pathways for each PLC family in FTO-2B cells. Selective suppression of each PLC family altered cell growth markedly and differentially. The rank order for suppression of cell growth by loss of a PLC family was gamma > delta > beta. Exploration of down-stream growth regulators revealed that loss of beta and gamma, but not delta, families was associated with markedly reduced basal ras and protein kinase C activity. Moreover, suppression of each of the three PLC families caused remarkably reduced basal and stimulated MAP kinase activities. Interestingly, cellular levels of PIP2 were increased and dramatically correlated with growth inhibition rate in the clones with suppressed PLC activity, suggesting that PIP2 itself can serve as a second messenger of cell growth regulation.  相似文献   

14.
The transmembrane PTPase HPTP beta differs from its related family members in having a single rather than a tandemly duplicated cytosolic catalytic domain. We have expressed the 354-amino acid, 41-kDa human PTP beta catalytic fragment in Escherichia coli, purified it, and assessed catalytic specificity with a series of pY peptides. HPTP beta shows distinctions from the related LAR PTPase and T cell CD45 PTPase domains: it recognizes phosphotyrosyl peptides of 9-11 residues from lck, src, and PLC gamma with Km values of 2, 4, and 1 microM, some 40-200-fold lower than the other two PTPases. With kcat values of 30-205 s-1, the catalytic efficiency, kcat/Km, of the HPTP beta 41-kDa catalytic domain is very high, up to 5.7 x 10(7) M-1 s-1. The peptides corresponding to PLC gamma (766-776) and EGFR (1,167-1,177) phosphorylation sites were used for structural variation to assess pY sequence context recognition by HPTP beta catalytic domain. While exchange of the alanine residue at the +2 position of the PLC gamma (Km of 1 microM) peptide to lysine or aspartic acid showed little or no effect on substrate affinity, replacement by arginine increased the Km 35-fold. Similarly, the high Km value of the EGFR pY peptide (Km of 104 microM) derives largely from the arginine residue at the +2 position of the peptide, since arginine to alanine single mutation at the -2 position of the EGFR peptide decreased the Km value 34-fold to 3 microM. Three thiophosphotyrosyl peptides have been prepared and act as substrates and competitive inhibitors of these PTPase catalytic domains.  相似文献   

15.
Hepatocyte growth factor (HGF) stimulates inositol 1,4,5-trisphosphate (InsP3) formation in rat primary cultured hepatocytes, which is inhibited by the pretreatment with a tyrosine kinase inhibitor, genistein. This InsP3 production was coincident with tyrosine phosphorylation of phospholipase C gamma (PLC gamma), detected in immunoprecipitates with anti-PLC gamma, suggesting activation mechanism of PLC gamma by tyrosine phosphorylation. However, in human hepatocarcinoma HepG2 cells, HGF, which suppresses cell growth, causes neither phosphorylation of PLC gamma nor InsP3 formation. The results suggests that PLC gamma in normal hepatocytes was activated by HGF through tyrosine kinase of HGF receptor.  相似文献   

16.
The G protein beta5 subunit differs substantially in amino acid sequence from the other known beta subunits suggesting that beta gamma dimers containing this protein may play specialized roles in cell signaling. To examine the functional properties of the beta5 subunit, recombinant beta5 gamma2 dimers were purified from baculovirus-infected Sf9 insect cells using a strategy based on two affinity tags (hexahistidine and FLAG) engineered into the N terminus of the gamma2 subunit (gamma2HF). The function of the pure beta5 gamma2HF dimers was examined in three assays: activation of pure phospholipase C-beta in lipid vesicles; activation of recombinant, type II adenylyl cyclase expressed in Sf9 cell membranes; and coupling of alpha subunits to the endothelin B (ETB) and M1 muscarinic receptors. In each case, the efficacy of the beta5 gamma2HF dimer was compared with that of the beta1 gamma2HF dimer, which has demonstrated activity in these assays. The beta5 gamma2HF dimer activated phospholipase C-beta with a potency and efficacy similar to that of beta1 gamma2 or beta1 gamma2HF; however, it was markedly less effective than the beta1 gamma2HF or beta1 gamma2 dimer in its ability to activate type II adenylyl cyclase (EC50 of approximately 700 nM versus 25 nM). Both the beta5 gamma2HF and the beta1 gamma2HF dimers supported coupling of M1 muscarinic receptors to the Gq alpha subunit. The ETB receptor coupled effectively to both the Gi and Gq alpha subunits in the presence of the beta1 gamma2HF dimer. In contrast, the beta5 gamma2HF dimer only supported coupling of the Gq alpha subunits to the ETB receptor and did not support coupling of the Gi alpha subunit. These results suggest that the beta5 gamma2HF dimer binds selectively to Gq alpha subunits and does not activate the same set of effectors as dimers containing the beta1 subunit. Overall, the data support a specialized role for the beta5 subunit in cell signaling.  相似文献   

17.
The age-dependent changes of expression of protein kinase C (PKC), phospholipase C (PLC) and phospholipase D (PLD) isozymes were analyzed in spleen, brain and kidney of young-adult (12-16 week-old) and aged (82-88 week-old) rats. The activities of spleen cPKC and nPKC were significantly decreased by nearly 35 and 30% in aged rats compared to those of young adults, respectively (P < 0.05). The level of PKC beta1 was significantly decreased in aged rats as assessed by RT-PCR and Western blot analyses. In aged rat brain where the activity of cPKC was significantly decreased by nearly 25% (P < 0.05), PKC alpha and beta1 isozymes were significantly down-regulated. In kidney, the level of PKC beta2 was decreased. In spleen the both mRNA and protein levels of PLC beta2 and gamma2 were significantly down-regulated in aged rat (P < 0.05). PLC beta1 was also significantly lower in aged rat brain (P < 0.05) as assessed by RT-PCR and Western blotting. Moreover, PLC beta1 was significantly down-regulated in both mRNA and protein levels in aged rat kidney (P < 0.05). In contrast, the tissues examined, the expressions of PLD isozymes (PLD1a, 1b and 2) were rather stable in the course of aging. These results indicate that mRNAs of PLD isozymes were rather stable but that particular PKC and PLC isozymes were down-regulated in different tissues during aging, suggesting age-dependent decline of specific PKC and PLC isozymes in organs which may, at least in part, be implicated in tissue dysfunction with aging.  相似文献   

18.
In response to fibroblast growth factor (FGF), FGF receptor-1 (FGFR-1) (flg) becomes tyrosine phosphorylated and associates with phospholipase C gamma (PLC gamma) and a 90 kDa protein. We report here that in cells transformed by v-Src, FGFR-1 becomes phosphorylated on tyrosine; however, neither PLC gamma nor p90 was found to be associated with tyrosine-phosphorylated FGFR-1. Instead, there was a strong constitutive association of FGFR-1 with the adaptor proteins Shc and Grb2 and the Ras guanine nucleotide exchange factor Sos. Association with Shc and Grb2 and Sos was not observed in response to FGF. Suramin did not prevent either tyrosine phosphorylation or Shc/Grb2/Sos association, indicating a non-autocrine mechanism. Thus, in cells transformed by v-Src, tyrosine phosphorylation of FGFR-1 results not in the expected association with PLC gamma and p90, but rather in the recruitment of the Ras activating Shc/Grb2/Sos complex. These data suggest a mechanism for Ras activation by v-Src involving phosphorylation of novel tyrosine(s) on FGFR-1.  相似文献   

19.
Pleckstrin homology (PH) domains are recognized in more than 100 different proteins, including mammalian phosphoinositide-specific phospholipase C (PLC) isozymes (isotypes beta, gamma, and delta). These structural motifs are thought to function as tethering devices linking their host proteins to membranes containing phosphoinositides or beta gamma subunits of heterotrimeric GTP binding (G) proteins. Although the PH domains of PLC-delta and PLC-gamma have been studied, the comparable domains of the beta isotypes have not. Here, we have measured the affinities of the isolated PH domains of PLC-beta 1 and -beta 2 (PH-beta 1 and PH-beta 2, respectively) for lipid bilayers and G-beta gamma subunits. Like the intact enzymes, these PH domains bind to membrane surfaces composed of zwitterionic phosphatidylcholine with moderate affinity. Inclusion of the anionic lipid phosphatidylserine or phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and inclusion of G-beta gamma subunits had little affect on their membrane affinity. In contrast, binding of PLC-delta 1 or its PH domain was highly dependent on PI(4,5)P2. We also determined whether these domains laterally associate with G-beta gamma subunits bound to membrane surfaces using fluorescence resonance energy transfer. Affinities for G-beta gamma were in the following order: PH-beta 2 >/= PH-beta 1 > PH-delta 1; the affinities of the native enzyme were as follows: PLC-beta 2 > PLC-delta 1 > PLC-beta 1. Thus, the PH domain of PLC-beta 1 interacts with G-beta gamma in isolation, but not in the context of the native enzyme. By contrast, docking of the PH domain of PLC-beta2 with G-beta gamma is comparable to that of the full-length protein and may play a key role in G-beta gamma recognition.  相似文献   

20.
Multiple endocrine neoplasia type 1 (MEN 1) is inherited as an autosomal dominant disorder, characterized by hyperplasia and neoplasia in several endocrine organs. The MEN 1 gene, which is most probably a tumor suppressor gene, has been localized to a 900-kb region on chromosome 11q13. The human phosphatidylinositol-specific phospholipase C beta 3 (PLC beta 3) gene, which is located within this region, was considered to be a good candidate for the MEN 1 gene. In this study, the structure and expression of the PLC beta 3 gene in MEN 1 patients were investigated in more detail, to determine its potential role in MEN 1 tumorigenesis. Southern blot analysis, using blood and tumor DNA from affected persons from seven different MEN 1 families, did not reveal structural abnormalities in the PLC beta 3 gene. To detect possible point mutations, or other small structural aberrations, direct sequencing of PLC beta 3 cDNAs from two affected persons from two different MEN 1 families was performed, but no MEN 1-specific abnormalities were revealed. Several common nucleotide sequence polymorphisms were detected in these cDNAs, proving that both alleles of the PLC beta 3 gene were expressed and analyzed. In conclusion, these results exclude the PLC beta 3 gene as a candidate gene for MEN 1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号