首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Histamine is a general dilator of rat blood vessels. We investigated the relative contribution of receptor subtypes to the rat mesenteric dilator responses initiated by histamine and related agonists. Histamine initiated dose, and endothelium-dependent, dilation of constricted mesenteric beds with an ED50 of 0.4 +/- 0.1 nmol. The ED50 was increased 10-fold by 0.1 microM chlorpheniramine (a histamine H1-receptor selective antagonist). Histamine H2 receptor blockade with tiotidine (0.1 microM) slightly decreased, while thioperamide (1 microM), a selective histamine H3 receptor antagonist, did not block histamine-induced dilation. Mesenteric bed dilation initiated by histamine H2 receptor selective agonists, amthamine and dimaprit, were antagonized markedly by tiotidine. However, the dilation initiated by the putative histamine H3 receptor selective agonists, R(-)- or S(+)-alpha-methylhistamine and imetit were not affected by thioperamide (1 microM). Histamine H2- and H3-receptor mediated dilator effects were endothelium-independent and were blocked by either excess (80 mM) extracellular K+, or 1 mM tetrabutylammonium (a non-selective K+ channel blocker), as well as by 1 microM dequalinium, a non-peptide blocker of the small conductance Ca2+-activated (SKCa) K+ channels. We conclude that (i) histamine H1 receptor subtype predominantly mediates endothelium-dependent dilator effect of histamine, and (ii) vascular hyperpolarization through opening of K+ channels (SKCa) mediate the dilator responses to histamine H2 receptor (amthamine and dimaprit) and the putative histamine H3 receptor (R(-)-alpha-methylhistamine and imetit) agonists.  相似文献   

2.
Effects of intracerebroventricular injection of histamine and its related compounds on rectal temperature were studied in mice. Histamine (0.1-1.0 mu g) and histidine (500-1,000 mg/kg) caused a dose-related hypothermia. H1 agonist, 2-methylhistamine and 2-thiazolylethylamine also displayed a dose-dependent hypothermia. In addition, H2 agonists, 4-methylhistamine and dimaprit elicited a decrease in body temperature. Preinjection of not only H1-antagonists (diphenhydramine and chlorpheniramine) but also H2 antagonists (cimetidine and ranitidine) abolished histamine-induced hypothermia. Either intracerebroventricular or intraperitoneal injection of thioperamide, a histamine H3 antagonist, showed hypothermia. The hypothermic effect produced by intracerebroventricular injection of thioperamide was significantly blocked by (R)-alpha-methylhistamine, a selective H3 agonist. In addition, the effect induced by thioperamide was inhibited by H1 and H2 antagonists, indicating that the H3 receptor also participates in histamine-induced hypothermia.  相似文献   

3.
BACKGROUND & AIMS: The role of histamine H3 receptors in the regulation of gastric acid secretion is unclear. The present study was designed to characterize the location of H3 receptors in the fundus of the stomach and the mechanism by which these receptors regulate acid secretion. METHODS: Acid, somatostatin, and histamine secretions were measured in the isolated mouse stomach. RESULTS: Thioperamide (H3 antagonist) increased somatostatin and decreased histamine and acid secretion in a concentration-dependent manner. (r)-alpha-Methylhistamine (H3 agonist) had the opposite effect, decreasing somatostatin and increasing histamine and acid secretion. The pattern implies that endogenous histamine, acting via H3 receptors, exerts an inhibitory paracrine influence on somatostatin secretion. Somatostatin antibody increased basal histamine secretion and abolished the decrease in histamine and acid secretion induced by thioperamide, confirming that changes in histamine and acid secretion induced by the activation of H3 receptors reflected changes in somatostatin secretion. Similar effects were obtained when acid secretion was stimulated by histamine: thioperamide augmented somatostatin and thus inhibited acid secretion, and (r)-alpha-methylhistamine attenuated somatostatin and increased acid secretion. CONCLUSIONS: Reciprocal inhibitory paracrine pathways link histamine and somatostatin cells in the gastric fundus. Histamine, acting via H3 receptors, augments acid secretion by eliminating the inhibitory influence of somatostatin.  相似文献   

4.
BACKGROUND: The histamine H3 receptor has been shown to inhibit pentagastrin-induced gastric acid secretion in dogs. Since pentagastrin releases histamine in dogs, we have now assessed whether the effects of H3-receptor ligands may be indirectly mediated by changes in gastric histamine release. METHODS: Pentagastrin infusions (1 or 6 micrograms/kg/h), alone or together with the H3-receptor agonist (R) alpha-methylhistamine (1.2 mumol/kg/h) or the antagonist thioperamide (0.1 mumol/kg/h), were performed in dogs. One group (anaesthetized) was used for enzyme immunoassays of plasma histamine and, when required. (R) alpha-methylhistamine in the gastrosplenic vein, and another group (non-anaesthetized) for measurement of gastric acid secretion. RESULTS: Histamine levels were increased five- and eight-fold after 1 and 6 micrograms/kg/h pentagastrin, respectively, whereas acid output was nearly maximal at the lower dosage. (R) alpha-methylhistamine, at a plasma concentration of 0.15 microM, inhibited histamine release by 78% (P < 0.007) and 37% (not significant) and the total acid output by 44% (P < 0.05) and 19% (not significant) after infusion of 1 and 6 micrograms/kg/h pentagastrin, respectively. Thioperamide, together with pentagastrin in low dose, significantly increased histamine release by 212% (P < 0.05), whereas acid output increased by 34% (not significant). CONCLUSIONS: The histamine H3 receptor mediates a negative feedback control of pentagastrin-induced release of gastric histamine. It is tonically activated by endogenous histamine after pentagastrin in low dosage. The control of acid secretion by the H3 receptor seems to involve modulation of endogenous histamine release, possibly by means of enterochromaffin-like cells.  相似文献   

5.
Changes in cytosolic Ca2+ concentration ([Ca2+]i) in cultured human mucosal microvascular endothelial cells (HMMECs) from nasal inferior turbinate were measured using a fluorescent Ca(2+)-sensitive dye, fura-2, and photometric fluorescence microscopy. Histamine caused a transient increase in intracellular free Ca2+ in cell populations and in individual cells, followed by a decrease to a sustained elevation. Histamine (100 microM) elevated [Ca2+]i in HMMECs up to 563 +/- 20 nM from a resting level of 60 +/- 45 nM (means +/- SD, n = 31). Promethazine (a histamine H1 receptor antagonist) inhibited [Ca2+]i increase during histamine stimulation, whereas cimetidine (a H2 receptor antagonist) and thioperamide (a H3 receptor antagonist) showed no inhibition. These results suggest that the histamine increase [Ca2+]i in HMMECs induces both a Ca2+ release from stores and a Ca2+ influx through activation of the H1 receptor.  相似文献   

6.
1. Effects of substances which are able to alter brain histamine levels and two histamine H1 receptor agonists were investigated in mice by means of an animal model of depression, the forced swim test. 2. Imipramine (10 and 30 mg kg(-1), i.p.) and amitriptyline (5 and 15 mg kg(-1), i.p.) were used as positive controls. Their effects were not affected by pretreatment with the histamine H3 receptor agonist, (R)-alpha-methylhistamine, at a dose (10 mg kg(-1), i.p.) which did not modify the cumulative time of immobility. 3. The histamine H3 receptor antagonist, thioperamide (2-20 mg kg(-1), s.c.), showed an antidepressant-like effect, with a maximum at the dose of 5 mg kg(-1), which was completely prevented by (R)-alpha-methylhistamine. 4. The histamine-N-methyltransferase inhibitor, metoprine (2-20 mg kg(-1), s.c.), was effective with an ED50 of 4.02 (2.71-5.96) mg kg(-1); its effect was prevented by (R)-alpha-methylhistamine. 5. The histamine precursor, L-histidine (100-1000 mg kg(-1), i.p.), dose-dependently decreased the time of immobility [ED30 587 (499-712) mg kg(-1)]. The effect of 500 mg kg(-1) L-histidine was completely prevented by the selective histidine decarboxylase inhibitor, (S)-alpha-fluoromethylhistidine (50 mg kg(-1), i.p.), administered 15 h before. 6. The highly selective histamine H1 receptor agonist, 2-(3-trifluoromethylphenyl)histamine (0.3-6.5 microg per mouse, i.c.v.), and the better known H1 agonist, 2-thiazolylethylamine (0.1-1 microg per mouse, i.c.v.), were both dose-dependently effective in decreasing the time of immobility [ED50 3.6 (1.53-8.48) and 1.34 (0.084-21.5) microg per mouse, respectively]. 7. None of the substances tested affected mouse performance in the rota rod test at the doses used in the forced swim test. 8. It was concluded that endogenous histamine reduces the time of immobility in this test, suggesting an antidepressant-like effect, via activation of H1 receptors.  相似文献   

7.
The histamine H3 receptor was initially identified as a presynaptic autoreceptor controlling histamine release and synthesis in the brain. It belongs to the superfamily of G protein-coupled receptors. The existence of the H3 receptor which has not yet been cloned was definitely established by the design of highly potent and selective agonists (R-(-)-alpha-methylhistamine, imetit) and antagonists (thioperamide, clobenpropit). These receptors also occur as heteroreceptors both in the central nervous system and on peripheral neurons of the gastrointestinal and bronchial tract, where they regulate the release of a variety of neurotransmitters. In the cardiovascular system, histamine H3 receptors are mainly located presynaptically on the postganglionic sympathetic nerve fibers innervating the blood vessels and the heart. Their activation leads to the inhibition of noradrenaline release and consequently to the reduction of the neurogenic vasopressor and cardiostimulatory responses. The presence of such receptors has been shown both in vitro (human, pig, guinea-pig, rabbit, rat isolated tissues) and in vivo (rat, guinea-pig). The vascular and cardiac presynaptic H3 receptors may be activated by endogenous histamine. The vascular H3 receptors appear to be operative in hypertension and interact with presynaptic alpha 2-adrenoceptors. Postsynaptic vasodilatatory H3 receptors have been detected in several vascular beds as well. H3 receptor ligands affect basal cardiovascular parameters in conscious and anesthetized guinea-pigs but not rats. Presynaptic H3 receptors may play a role in the pathophysiology of headache and cardiac ischemia.  相似文献   

8.
Experiments were performed to characterize the pharmacology of Sch 50971 ((+)-trans-4-(4(R)-methyl-3(R)-pyrolidinyl)-1H-imidazole dihydrochloride, CAS 167610-28-8), a novel histamine H3 receptor agonist. The activity of Sch 50971 was compared with that of (R)-alpha-methylhistamine (CAS 75614-87-8), a potent and moderately selective agonist of histamine H3 receptors, in a series of in vitro and in vivo assays. Sch 50971 is a high affinity, selective H3 receptor agonist in vitro and in vivo. Sch 50971 inhibits [3H]-N-alpha-methylhistamine (CAS 673-50-7) binding to the histamine H3 receptor in human brain (Ki = 5.0 nmol/l) and guinea pig brain (Ki = 2.5 nmol/l). Sch 50971 also inhibits electric field stimulated guinea pig ileum contractions (pD2 = 7.47) and decreases [3H]-norepinephrine (CAS 51-41-2) release (pD2 = 7.48) from guinea pig pulmonary artery by activation of presynaptic inhibitory H3 receptors. The in vitro effects of Sch 50971 are antagonized by low concentrations of a selective H3 antagonist, thioperamide (CAS 106243-16-7). Sch 50971 has low affinity (IC50's > 10 mumol/l) for histamine H1, dopamine D1 and D2, serotonin 5-HT2 and muscarinic cholinergic receptors. It also does not exhibit histamine H2-antagonist activity. In guinea pigs and cats, Sch 50971 exhibits in vivo H3 agonist activity. Sch 50971 inhibits sympathetic hypertension evoked by stimulation of the medulla oblongata in anesthetized guinea pigs (ED30 = 0.3 mg/kg i.v., ED30 = 1.0 mg/kg i.d.). Sch 50971 also inhibits the effects of sympathetic nerve stimulation on nasal resistance in cats. In these assays, Sch 50971 exhibits an efficacy and potency comparable to H3-agonist (R)-alpha-methylhistamine. However, under in vivo conditions, Sch 50971 does not exhibit histamine H1-mediated responses that are seen with (R)-alpha-methylhistamine at doses close to those that produce H3 effects. Therefore, Sch 50971 is a novel, potent and selective agonist of histamine H3 receptors with an improved in vitro and in vivo receptor profile selectivity compared with (R)-alpha-methylhistamine.  相似文献   

9.
10.
Using a microdialysis method and a new high performance liquid chromatography (HPLC)-fluorometric method for the detection of gamma-aminobutyric acid (GABA), we investigated the effect of thioperamide, an H3 receptor antagonist, on the GABA content in the dialysate from the anterior hypothalamic area of rats anesthetized with urethane. The addition of thioperamide to the perfusion fluid increased the release of GABA and histamine. Depleting neuronal histamine with alpha-fluoromethylhistidine, a specific inhibitor of histidine decarboxylase, and the administration of immepip, an H3 agonist, had no effect on basal- and thioperamide-induced GABA release. In addition, an infusion of clobenpropit, the most specific H3 receptor antagonist available, did not alter the basal release of GABA. On the other hand, histamine release was decreased by immepip and increased by thioperamide and clobenpropit. Removing Ca2+ from the perfusion fluid did not alter the effect of thioperamide on the GABA release, whereas that on histamine release was abrogated. These results suggest that the effect of thioperamide on GABA release is not mediated by histamine H3 receptors and that thioperamide acts on the transporter to cause an efflux of GABA from neurons and/or glia. Thioperamide is a popular H3 receptor antagonist which has been used applied to many studies. However, results using this compound should be interpreted in consideration of its effects on GABA release.  相似文献   

11.
This paper summarizes the findings obtained for three different series of original compounds designed as potential H3-antagonists starting from thioperamide structure. The compounds were tested in functional and binding assays to estimate their potency, affinity and selectivity for histamine H3 receptors. Among them, many non-thiourea/isothiourea derivatives acted as selective H3 competitive antagonists and, particularly, 4(5)-[2-[4(5)-cyclohexylimidazol-2-ylthio]ethyl] imidazole (dIII) proved to be the most potent H3 blocker vs (R)-alpha-methylhistamine in electrically-stimulated ileum. This imidazole derivative, devoid of thiourea dependent toxic effects, with high affinity displaced biphasically [3H]-N alpha-methylhistamine bound to rat brain H3 sites. Thus, such compound could be proposed as the prototype molecule for the development of new non-thiourea/isothiourea H3-antagonists and as experimental tool to explore the intriguing question of H3 receptor heterogeneity.  相似文献   

12.
Whether anaphylactic histamine release from rat peritoneal mast cells is influenced by betahistine, a histamine H1-receptor agonist/H3-antagonist, and dimaprit, an H2-agonist, was examined. Treatment with dimaprit at 6 and 60 microM for 20 min significantly inhibited the anaphylactic histamine release, whereas betahistine at up to 80 microM under the same conditions did not affect it. Treatment with dimaprit at 6 and 60 microM for 1 to 20 min and for 5 to 20 min, respectively, caused a time-dependent inhibition of the release, but up to 30 min treatment with 8 and 80 microM betahistine had no effect. The decreased histamine release induced by dimaprit was recovered by neither mepyramine nor cimetidine. However, thioperamide, an H3-selective antagonist, dose-dependently restored the diminished release. From these results, the inhibition of anaphylactic histamine release by dimaprit is not produced by the stimulation of H2-receptors, but involves the stimulation of H3-like receptors or H3-subtype receptors, which are distinct from the H3-receptors located in brain, and suggests that the receptor plays an important role in the negative feedback regulation of histamine release.  相似文献   

13.
The role of histamine H1-, H2- and H3-receptors was studied on neural transmission in ascending excitatory pathways of the guinea pig ileum. A two-compartment (oral and anal compartments) bath was used: ascending neural pathways were activated by electrical stimulation in the anal compartment and the resulting contraction of the circular muscle in the oral compartment was recorded. Drugs were applied in the anal compartment and each agonist was evaluated in the presence of the antagonists of the other two receptors. In the presence of cimetidine (10 microM) and thioperamide (1 microM), histamine (0.03-3 microM) depressed the nerve-mediated contractions (5-70% inhibition, P <.05-.01). The inhibitory effect of histamine was antagonized by mepyramine. At the higher concentrations (10 and 30 microM), histamine elicited contractions of the circular muscle in the oral compartment, and these were abolished by mepyramine (1 microM) and tetrodotoxin (0.6 microM). The H2 agonists dimaprit (30 and 100 microM) and amphamine (0.1-300 microM) produced small contractions of the circular muscle in the oral compartment. These contractile responses were abolished by tetrodotoxin (0.6 microM) and cimetidine (10 microM). The H3 agonist R-alpha-methylhistamine (0.001-1 microM) inhibited (2-58%, P <.05) the nerve-mediated contractions. This inhibitory effect was antagonized by the H3 antagonist thioperamide. These results indicate that 1) histamine, acting at H1 receptors, at lower concentrations depresses synaptic transmission, although at higher concentrations activates the enteric excitatory ascending pathway; 2) activation of H2 receptors by H2 agonists stimulates the enteric excitatory ascending pathways and 3) activation of H3 receptors inhibits synaptic transmission.  相似文献   

14.
The ability of histamine H3 receptor ligands to interact with 5-HT3 receptors in NG108-15 cells was studied using the whole cell patch clamp recording technique. Imetit, a histamine H3 receptor agonist, generated inward currents and exhibited weak partial agonist activity at the 5-HT3 receptor (EC50 = 11.8 microM). Imetit-induced currents were slow to desensitize and at a high concentration reduced in size. The histamine H3 receptor antagonists iodophenpropit and thioperamide did not generate inward currents but were able to inhibit 5-hydroxytryptamine (5-HT) responses with an IC50 of 1.57+/-0.3 microM and 13.7+/-3.5 microM, respectively. Thioperamide is probably a non-competitive antagonist which may have more than one binding site on the receptor.  相似文献   

15.
1. Pretreatment of bovine tracheal smooth muscle (BTSM) with histamine (1-100 microM, 1 h) induced a concentration-dependent desensitization of the contractile response to subsequently administered histamine, with a reduction of the maximum response of 72 +/- 8% (n = 5) following pre-exposure to 100 microM histamine. In contrast, concentration-response curves to the muscarinic agonist, methacholine were not affected following histamine pretreatment, indicating a homologous desensitization. Furthermore, concentration-response curves to NaF, a G-protein activator, were not altered following histamine pre-incubation. 2. The histamine H1-receptor (H1R) desensitization could be antagonized by mepyramine (an H1-receptor antagonist, 1 microM) but not by cimetidine (an H2-receptor antagonist, 10 microM), indicating that the desensitization occurred via stimulation of histamine H1-receptors, without evidence for the involvement of histamine H2-receptors. 3. Indomethacin (10 microM) did not block the H1R desensitization, suggesting no involvement of prostaglandins. Furthermore, histamine pre-incubation in calcium free medium still induced a functional uncoupling of H1R. 4. GF 109203X, a protein kinase C (PKC) inhibitor, and H-7, a non-selective kinase inhibitor, did not antagonize the homologous H1R desensitization. 5. The steady-state level of H1R mRNA, assessed by Northern blot analysis, was not affected by prolonged histamine exposure (100 microM, 0.5, 1, 2, 4, 16 and 24 h). 6. These results suggest that histamine induces desensitization of the H1R at the level of the receptor protein, which involves a mechanism independent of PKC, PKA, PKG and calcium influx, suggesting the involvement of a receptor-specific kinase.  相似文献   

16.
Histamine is a known chromaffin cell secretagogue that induces Ca(2+) -dependent release of catecholamines. However, conflicting evidence exists as to the source of Ca2+ utilized in histamine-evoked secretion. Here we report that histamine-H1 receptor activation induces redistribution of scinderin, a Ca(2+)-dependent F-actin severing protein, cortical F-actin disassembly, and catecholamine release. Histamine evoked similar patterns of distribution of scinderin and filamentous actin. The rapid responses to histamine occurred in the absence of extracellular Ca2+ and were triggered by release of Ca2+ from intracellular stores. The trigger for the release of Ca2+ was inositol 1,4,5-trisphosphate because U-73122, a phospholipase C inhibitor, but not its inactive isomer (U-73343), inhibited the increases in IP3 and intracellular Ca2+ levels, scinderin redistribution, cortical F-actin disassembly, and catecholamine release in response to histamine. Thapsigargin, an agent known to mobilize intracellular Ca2+, blocked the rise in intracellular Ca2+ concentration, scinderin redistribution, F-actin disassembly, and catecholamine secretion in response to histamine. Calphostin C and chelerythrine, two inhibitors of protein kinase C, blocked all responses to histamine with the exception of the release of Ca2+ from intracellular stores. This suggests that protein kinase C is involved in histamine-induced responses. The results also show that in the absence of F-actin disassembly, rises in intracellular Ca2+ concentration are not by themselves capable of triggering catecholamine release.  相似文献   

17.
We studied the effects of inactivators of the central histaminergic neuron system, (R)-alpha-methylhistamine, a histamine H3 receptor agonist, and (S)-alpha-fluoromethylhistidine, a histamine synthesis inhibitor, on locomotor activity and brain histamine content of mast cell-deficient W/Wv mice using a recently developed high-performance liquid chromatography system coupled with a fluorometric detector. IP injection of (R)-alpha-methylhistamine (6-50 mg/kg) increased brain histamine content after 1 h but caused no significant change in locomotor activity. IP injection of (S)-alpha-fluoromethylhistidine decreased brain histamine content at doses of 6-50 mg/kg and locomotor activity at doses of 12.5-50 mg/kg. However, locomotor activity was decreased significantly (in Student's t-test) by sequential administrations of (S)-alpha-fluoromethylhistidine (6 mg/kg) and (R)-alpha-methylhistamine (12.5 or 25 mg/kg), but not by (S)-alpha-fluoromethylhistidine (6 mg/kg) and other doses of (R)-alpha-methylhistamine (6 or 50 mg/kg). These results support the hypothesis that the central histaminergic neuron system is involved in the control of spontaneous locomotion or alertness.  相似文献   

18.
Serotonergic and histaminergic neuronal systems are both involved in mediation of the stress-induced release of the pituitary hormones prolactin (PRL) and ACTH. We investigated the possibility of an interaction between serotonin (5-HT) and histamine (HA) in regulation of PRL and ACTH secretion in conscious male rats. Animals were pretreated systemically with antagonists to 5-HT1, 5-HT2 or 5-HT3 receptors prior to intracerebroventricular (icv) administration of HA. The 5-HT1 + 2 receptor antagonist methysergide prevented and the 5-HT2 receptor antagonist LY 53857 attenuated the HA-induced PRL release while the 5-HT3 receptor antagonist ondansetron had no effect on this response. None of the three 5-HT receptor antagonists affected the ACTH response to HA. Specific blockade of HA synthesis by alpha-fluoromethylhistidine or blockade of postsynaptic HA receptors by icv infusion of the H1 receptor antagonist mepyramine or the H2 receptor antagonist cimetidine inhibited the PRL response to 5-HT or to the 5-HT precursor 5-hydroxytryptophan (5- HTP) given in combination with the 5-HT reuptake inhibitor fluoxetine (Flx). Blockade of the histaminergic system had no effect on the ACTH response to serotonergic stimulation. The H3 receptors are inhibitory HA receptors. Systemic pretreatment with the H3 receptor agonist R(alpha)methylhistamine, or the H3 receptor antagonist thioperamide had no effect on the hormone response to activation of the serotonergic system by 5-HTP plus Flx. We conclude that the serotonergic and histaminergic neuronal systems interact in their stimulation of PRL secretion, but not in their stimulation of ACTH secretion. This interaction involves serotonergic 5-HT1 and 5-HT2 receptors and histaminergic H1 and H2 receptors. Furthermore, the previously observed inhibitory effect of the H3 receptor agonist R(alpha)methylhistamine on stress-induced PRL and ACTH release seems not to be exerted by activation of presynaptic H3 receptors located on serotonergic neurons but rather on histaminergic neurons.  相似文献   

19.
Olopatadine (AL-4943A; KW-4679) [(Z)-11-[3-(dimethylamino)propylidene]-6, 11-dihydrodibenz[b,e]oxepine-2-acetic acid hydrochloride] is an antiallergic/antihistaminic drug under development for topical ocular use. The effects of the compound on release of proinflammatory mediators (histamine, tryptase and prostaglandin D2) from monodispersed human conjunctival mast cells were assessed. Histamine receptor subtype binding affinities and functional potencies were determined with ligand binding and phosphoinositide turnover assays, respectively. Olopatadine inhibited the release of histamine, tryptase and prostaglandin D2, in a concentration-dependent manner (IC50 = 559 microM). Evaluation of the interaction of olopatadine with histamine receptors revealed a relatively high affinity for the H1 receptor (Ki = 31.6 nM, pKi = 7.5 +/- 0.1, n = 7) but lower affinities for H2 receptors (Ki = 100 microM, pKi = 4.0 +/- 0.19, n = 7) and H3 receptors (Ki = 79.4 microM, pKi = 4.1 +/- 0.16, n = 7). The H1 selectivity of olopatadine was superior to that of other ocularly used antihistamines studied, such as ketotifen, levocabastine, antazoline and pheniramine. The profiling of olopatadine in 42 nonhistamine receptor binding assays revealed that olopatadine interacts with only two nonhistamine receptor/uptake sites to any significant degree (pIC50 < or = 5-6). Olopatadine inhibited histamine-induced phosphoinositide turnover in human conjunctival epithelial cells (IC50 = 10 nM, pIC50 = 8.0, n = 4) and in other human ocular cells (IC50 = 15.8-31.6 nM, pIC50 = 7.5-7.8) and exhibited apparent noncompetitive antagonist properties in these cells, with an estimated dissociation constant (Kb) of 19.9 nM (pKb = 7.7, n = 6). This combination of mast cell mediator release inhibition and selective H1 receptor antagonism suggests that olopatadine may be particularly useful in the treatment of ocular allergic diseases. Indeed, olopatadine has recently shown clinical efficacy in an allergic conjunctivitis model in human subjects.  相似文献   

20.
The effects of the human immunodeficiency virus type 1 envelope protein gp120 on the release of GABA elicited by N-methyl-D-aspartate (NMDA) from rat hippocampal neurons in primary culture has been investigated. NMDA (1-300 microM) increased in a concentration-dependent manner (EC50 =37.9+/-12 microM) the release of [3H]-GABA. The effect of 100 microM NMDA was prevented by 30 microM of the GABA transport inhibitor N-(4,4-diphenyl-3-butenyl)guvacine (SKF 100330A). Glycine (10 microM) or gp120 (0.01 microM) affected neither the basal nor the NMDA-evoked [3H]-GABA release. The NMDA (100 microM)-evoked release was prevented by 5,7-dichloro-kynurenic acid (5,7-DCKA), a selective antagonist at the glycine site of the NMDA receptor, in a concentration-dependent manner (IC50 approximately 0.3 microM). Glycine (3-10 microM) or gp120 (0.003-0.01 microM) produced reversal of the 5,7-DCKA antagonism in a way that suggested competition at a same site; gp120 was at least 3 orders of magnitude more potent than glycine. It is suggested that gp120 may mimic glycine at NMDA receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号