首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Feng SC  Vorburger TV  Joung CB  Dixson RG  Fu J  Ma L 《Scanning》2008,30(1):47-55
It is difficult to predict the measurement bias arising from the compliance of the atomic force microscope (AFM) probe. The issue becomes particularly important in this situation where nanometer uncertainties are sought for measurements with dimensional probes composed of flexible carbon nanotubes mounted on AFM cantilevers. We have developed a finite element model for simulating the mechanical behavior of AFM cantilevers with carbon nanotubes attached. Spring constants of both the nanotube and cantilever in two directions are calculated using the finite element method with known Young's moduli of both silicon and multiwall nanotube as input data. Compliance of the nanotube-attached AFM probe tip may be calculated from the set of spring constants. This paper presents static models that together provide a basis to estimate uncertainties in linewidth measurement using nanotubes. In particular, the interaction between a multiwall nanotube tip and a silicon sample is modeled using the Lennard-Jones theory. Snap-in and snap-out of the probe tip in a scanning mode are calculated by integrating the compliance of the probe and the sample-tip interacting force model. Cantilever and probe tip deflections and points of contact are derived for both horizontal scanning of a plateau and vertically scanning of a wall. The finite element method and the Lennard-Jones model provide a means to analyze the interaction of the probe and sample and measurement uncertainty, including actual deflection and the gap between the probe tip and the measured sample surface.  相似文献   

2.
减小探针和样品表面之间的长程宏观力是原子力显微镜获得高分辨率成像的关键。首先通过理论分析得出影响长程力的主要因素是探针的几何形状和尺寸。然后分别运用几何形状和尺寸不同的原子力显微镜的传统Si针尖和碳纳米管针尖对样品进行扫描试验研究,结果显示碳纳米管针尖较传统针尖获得了高分辨率的图像。这一结果表明,碳纳米管针尖减小了成像中宏观长程作用力的影响,是理想的原子力显微镜针尖。  相似文献   

3.
Multi-walled carbon nanotube (CNT) tips were used in atomic force microscope (AFM) anodization lithography to investigate their advantages over conventional tips. The CNT tip required a larger threshold voltage than the mother silicon tip due to the Schottky barrier at the CNT-Si interface. Current-to-voltage curves distinguished the junction property between CNTs and mother tips. The CNT-platinum tip, which is more conductive than the CNT-silicon tip, showed promising results for AFM anodization lithography. Finally, the nanostructures with high aspect ratio were fabricated using a pulsed bias voltage technique as well as the CNT tip.  相似文献   

4.
Quartz tuning forks mounted with sharp tips provide an alternate method to silicon microcantilevers for probing the tip-substrate interaction in scanning probe microscopy. The high quality factor and stable resonant frequency of the tuning fork allow accurate measurements of small shifts in the resonant frequency as the tip approaches the substrate. To permit an accurate measure of surface interaction forces, the electrical and piezoelectromechanical properties of a tuning fork have been characterized using a fiber optical interferometer.  相似文献   

5.
We have established a fabrication process for conductive carbon nanotube (CNT) tips for multiprobe scanning tunneling microscope (STM) with high yield. This was achieved, first, by attaching a CNT at the apex of a supporting W tip by a dielectrophoresis method, second, by reinforcing the adhesion between the CNT and the W tip by electron beam deposition of hydrocarbon and subsequent heating, and finally by wholly coating it with a thin metal layer by pulsed laser deposition. More than 90% of the CNT tips survived after long-distance transportation in air, indicating the practical durability of the CNT tips. The shape of the CNT tip did not change even after making contact with another metal tip more than 100 times repeatedly, which evidenced its mechanical robustness. We exploited the CNT tips for the electronic transport measurement by a four-terminal method in a multiprobe STM, in which the PtIr-coated CNT portion of the tip exhibited diffusive transport with a low resistivity of 1.8 kOmega/microm. The contact resistance at the junction between the CNT and the supporting W tip was estimated to be less than 0.7 kOmega. We confirmed that the PtIr thin layer remained at the CNT-W junction portion after excess current passed through, although the PtIr layer was peeled off on the CNT to aggregate into particles, which was likely due to electromigration or a thermally activated diffusion process. These results indicate that the CNT tips fabricated by our recipe possess high reliability and reproducibility sufficient for multiprobe STM measurements.  相似文献   

6.
This paper focuses on the utilization of carbon nanotubes for the fabrication of thin-film transistors (TFTs) using a direct-write inkjet process. Single-walled carbon nanotubes (SWNTs) are well regarded for their superior electrical, magnetic, and thermal properties. The development of TFTs requires high carrier mobility comparable to that of SWNTs (100,000 cm2/V.s) which can be doped as both n- and p-types. We have enriched semiconducting SWNTs (s-SWNTs) into specific chiralities to provide a consistent band gap required for the fabrication of transistors with reproducible electrical properties. In this research, we investigate the use of direct-write inkjet to deposit enriched s-SWNTs on Kapton substrates to fabricate flexible thin-film transistors (fTFTs). The direct writing technique provides accurate deposition control and reproducibility to print s-SWNTs over large areas. Optical and atomic force microscopy images identify threshold of nanotube bundle connectivity for different deposition configurations. We demonstrate the fabrication of SWNT traces with varying conductivity and transport characteristics towards large-scale fTFTs.  相似文献   

7.
Gibson CT  Carnally S  Roberts CJ 《Ultramicroscopy》2007,107(10-11):1118-1122
In atomic force microscopy (AFM) the accuracy of data is often limited by the tip geometry and the effect on this geometry of wear. One way to improve the tip geometry is to attach carbon nanotubes (CNT) to AFM tips. CNTs are ideal because they have a small diameter (typically between 1 and 20nm), high aspect ratio, high strength, good conductivity, and almost no wear. A number of methods for CNT attachment have been proposed and explored including chemical vapour deposition (CVD), dielectrophoresis, arc discharge and mechanical attachment. In this work we will use CVD to deposit nanotubes onto a silicon surface and then investigate improved methods to pick-up and attach CNTs to tapping mode probes. Conventional pick-up methods involve using standard tapping mode or non-contact mode so as to attach only those CNTs that are aligned vertically on the surface. We have developed improved methods to attach CNTs using contact mode and reduced set-point tapping mode imaging. Using these techniques the AFM tip is in contact with a greater number of CNTs and the rate and stability of CNT pick-up is improved. The presence of CNTs on the modified AFM tips was confirmed by high-resolution AFM imaging, analysis of the tips dynamic force curves and scanning electron microscopy (SEM).  相似文献   

8.
Hata K  Takakura A  Saito Y 《Ultramicroscopy》2003,95(1-4):107-112
Adsorption and desorption on clean pentagons at a tip of multiwall carbon nanotube (MWNT) have been investigated by field emission microscopy (FEM) in an atmosphere of various gases, i.e., hydrogen, carbon monoxide, nitrogen and oxygen. A MWNT with clean surface which is obtained by heat treatment gives FEM patterns consisting of six bright pentagonal rings. Adsorbates are recognized as bright spots in the FEM pattern. They reside preferentially on the pentagonal sites where the strong electric field is concentrated, and bring about stepwise increase in the emission current. Heat treatment of the MWNT emitter at about 1300K allows adsorbates to desorb. After the desorption of hydrogen and nitrogen, the original clean surface with pentagons is recovered, while the tip structure is destroyed after the desorption of oxygen.  相似文献   

9.
Falvo  M.R.  Steele  J.  Taylor  R.M.  Superfine  R. 《Tribology Letters》2000,9(1-2):73-76
We report on experiments in which multiwall carbon nanotubes (CNTs) are manipulated with AFM on a graphite (HOPG) substrate. We find certain discrete orientations in which the lateral force of manipulation dramatically increases as we rotate the CNT in the plane of the HOPG surface with the AFM tip. The three-fold symmetry of these discrete orientations indicates commensurate contact of the hexagonal graphene surfaces of the HOPG and CNT. As the CNT moves into commensurate contact, we observe the motion change from sliding/rotating in-plane to stick–roll motion.  相似文献   

10.
We succeeded in plan-view dynamic observation of the initial formation process of carbon nanotubes from β-SiC( 1 1 1 ) surfaces by time-resolved high resolution transmission electron microscopy. At 1360 °C, the flakes of graphite layers of a fibre orientation were formed on the SiC( 1 1 1 ) surfaces. From the graphite layers, carbon nanotubes were formed perpendicular to the ( 1 1 1 ) plane of the SiC. A scanning tunnelling microscopy observation showed that the end of carbon nanotube was closed. These results indicate that the caps of the carbon nanotubes are formed by a lift of a part of the graphene along the [ 1 1 1 ] direction of the SiC through generation of pentagons and heptagons. Two types of carbon nanotube, single-wall and double-wall, were observed in plan-view images. Different image intensity between an outer ring and an inner ring in double-wall nanotubes suggests that the inner layers of multiwall nanotubes are formed after the outer ones.  相似文献   

11.
Carbon nanotube (CNT)-tipped atomic force microscopy (AFM) probes have shown a significant potential for obtaining high-resolution imaging of nanostructure and biological materials. In this paper, we report a simple method to fabricate single-walled carbon nanotube (SWNT) nanoprobes for AFM using the Langmuir–Blodgett (LB) technique. Thiophenyl-modified SWNTs (SWNT-SHs) through amidation of SWNTs in chloroform allowed to be spread and form a stable Langmuir monolayer at the water/air interface. A simple two-step transfer process was used: (1) dipping conventional AFM probes into the Langmuir monolayer and (2) lifting the probes from the water surface. This results in the attachment of SWNTs onto the tips of AFM nanoprobes. We found that the SWNTs assembled on the nanoprobes were well-oriented and robust enough to maintain their shape and direction even after successive scans. AFM measurements of a nano-porous alumina substrate and deoxyribonucleic acid using SWNT-modified nanoprobes revealed that the curvature diameter of the nanoprobes was less than 3 nm and a fine resolution was obtained than that from conventional AFM probes. We also demonstrate that the LB method is a scalable process capable of simultaneously fabricating a large number of SWNT-modified nanoprobes.  相似文献   

12.
研究在光学显微镜下,运用两个独立的三维工作台分别控制针尖和碳纳米管的位置,将碳纳米管吸附在传统的原子力显微镜针尖上。首先将碳纳米管粘附在导电的胶带上,然后用涂胶的针尖与其接触将碳纳米管粘附到针尖上,最后运用电蚀的方法优化碳纳米管针尖的长度,以达到高分辨率的要求。运用制作的碳纳米管针尖对硅表面的深槽进行成像,获得了传统针尖无法得到的信息。  相似文献   

13.
Lee JH  Kang WS  Choi BS  Choi SW  Kim JH 《Ultramicroscopy》2008,108(10):1163-1167
Carbon nanotube (CNT)-tipped atomic force microscopy (AFM) probes have shown a significant potential for obtaining high-resolution imaging of nanostructure and biological materials. In this paper, we report a simple method to fabricate single-walled carbon nanotube (SWNT) nanoprobes for AFM using the Langmuir-Blodgett (LB) technique. Thiophenyl-modified SWNTs (SWNT-SHs) through amidation of SWNTs in chloroform allowed to be spread and form a stable Langmuir monolayer at the water/air interface. A simple two-step transfer process was used: (1) dipping conventional AFM probes into the Langmuir monolayer and (2) lifting the probes from the water surface. This results in the attachment of SWNTs onto the tips of AFM nanoprobes. We found that the SWNTs assembled on the nanoprobes were well-oriented and robust enough to maintain their shape and direction even after successive scans. AFM measurements of a nano-porous alumina substrate and deoxyribonucleic acid using SWNT-modified nanoprobes revealed that the curvature diameter of the nanoprobes was less than 3nm and a fine resolution was obtained than that from conventional AFM probes. We also demonstrate that the LB method is a scalable process capable of simultaneously fabricating a large number of SWNT-modified nanoprobes.  相似文献   

14.
A model for the lateral contact stiffness for an elastic foundation was developed. The model was evaluated using a low force and low contact pressure microtribometer capable of performing indentation and reciprocated sliding experiments. The slope of lateral force versus the lateral displacement was used to fit the shear modulus. When complementary elastic indentation measurements are made to determine the composite modulus of the elastic foundation, there is sufficient data to fit elastic modulus, shear modulus, and Poisson ratio for these thin films. Using these models, the elastic properties for a thin (~65 μm) vertically aligned multiwall carbon nanotube film were evaluated. The experiments were performed with a silicon nitride indenter (radius = 1.6 mm) over a range in loads from 100 to 800 μN. The resulting values of the elastic modulus, shear modulus, and Poisson ratio were E = 429 kPa, G = 156 kPa, and ν = 0.37, respectively.  相似文献   

15.
Ball-shaped atomic force microscope (AFM) tips (ball tips) are useful in AFM metrology, particularly in critical dimension AFM metrology and in micro-tribology. However, a systematic fabrication method for nano-scale ball tips has not been reported. We report that nano-scale ball tips can be fabricated by ion-beam-induced deposition (IBID) of Pt at the free end of multiwall carbon nanotubes that are attached to AFM tips. Scanning electron microscopy and transmission electron microscopy analyses were done on the Pt ball tips produced by IBID in this manner, using ranges of Ga ion beam conditions. The Pt ball tips produced consisted of aggregated Pt nano-particles and were found to be strong enough for AFM imaging.  相似文献   

16.
ABSTRACT

Closed-form finite-element empirical models are available for elastic and elastic–plastic spherical and sinusoidal contact. However, some of these models do not consider the effect of interaction with adjacent asperities or require extensive numerical resources because they employ a full 3-D model. Therefore this work has analysed and quantified the behaviour of an elastic and elastic- perfectly plastic axisymmetric sinusoidal surface in contact with a rigid flat for a wide range of material properties and different values of the amplitude to wavelength ratio from initial to complete contact (high load). The numerical results agreed well with the Hertz model and the Jackson–Green elastic–plastic spherical contact model at low loads. Empirical equations for elastic and also elastic-perfectly plastic cases are formulated for the contact pressure, contact area and surface separation. From the current analysis, it is found that it is not any single parameter, but different combinations of material properties and surface roughness that govern the whole contact behaviour. The critical value of the amplitude of the sinusoidal asperity below which it will deform completely elastically from initial to complete contact is established. At low values of amplitude normalized by the critical amplitude, it was found that the contact behaved similar to a spherical contact, with the average pressure (hardness) always remaining lower than three times the yield strength. However, at higher values the average pressure increased toward a value as high as six times the yield strength at complete contact. All of these equations should be useful in rough surface contact modelling, lubrication analysis, electrical contact modelling and in many other applications.  相似文献   

17.
R. Buzio  C. BoragnoU. Valbusa 《Wear》2003,254(9):917-923
We investigated the contact mechanics and friction forces between atomic force microscope (AFM) probes and self-affine fractal carbon films. We studied single-asperity contacts by means of conventional nanometric conical tips whilst custom-designed micrometric flat tips were adopted to form multiple junctions between the probe and the sample. By varying the externally applied load we found that the average frictional force follows a power-law behavior in the single-asperity regime and a linear behavior in the multi-asperity regime. The friction coefficient was the same for carbon specimens having different fractality. We also acquired quasi-static load-displacement curves on micrometric scale, revealing a strong dependence of the average indentation depth on the values of fractal parameters. A comparison of experimental data with contact theories for randomly rough surfaces is provided.  相似文献   

18.
Nanofluids for grinding process are prepared by mixing the multiwall carbon nanotubes with SAE20W40 oil. In this experimental study, the surface roughness and micro cracks are analysed. The material AISI D3 tool steel is most frequently use for mould and dies which is preferred to analyse the surface characteristics. Experimental results indicate that the surface finish of the machined work piece increases from micro level to nano level. L8 orthogonal array was used to optimize the machining parameters in Taguchi design of experiment technique using Minitab 15 software. Empirical model for the prediction of output parameters has been developed using regression analysis and the results are compared empirically for with and without nanofluids in grinding process. The analysis of variance and F test were used to determine the significant parameter affecting the surface roughness. Atomic force microscopy analysis indicated that carbon nanotube mixed with nanofluid in grinding process has improved the surface characteristics like surface roughness and micro cracks.  相似文献   

19.
Polymeric carbon nanotube (CNT) nanocomposites have unique mechanical, electrical, and thermal properties. Anisotropy can be induced depending on the alignment of the CNT fillers within polymeric composites, which is known to affect material properties. In order to investigate the effects of CNT alignments in micromechanical scribing using a single crystal diamond tool, a microindenter–scriber system was developed. Multiwalled carbon nanotube–polystyrene (MWCNT–PS) samples with varying CNT concentrations were prepared through a microinjection molding process, where the injection enables the partial alignment of CNTs in the flow direction through high shear stress. A mechanistic scribing force model was proposed based on the material properties that could be obtained using the microindentation techniques. Scribing experiments were performed in the parallel and perpendicular directions to the CNT alignment. Forces in three axes were measured and analyzed to identify three unknown parameters—the shearing, plowing, and adhesion friction coefficients. The resulting coefficients for scribing perpendicular to the CNT alignment showed distinguishable trends from scribing parallel to the CNT alignment as the CNT loadings increased. Their linear trends in relation to the material properties identified from indentation techniques can be used to predict microscribing parameters and resulting cutting forces, in combination with the proposed mechanistic model.  相似文献   

20.
Implantation is a promising method to control the surface characteristics by changing surface energy of target materials. Previously, polymer surfaces have been investigated for the change of their morphology and the corresponding contact angle after implantation. Furthermore, oxide thin films have been studied for how their surface properties are changed by implantation. However, nanoporous oxide materials have rarely explored for the effect of implantation. Here, we investigated the effects of proton implantation on morphological, mechanical, electrical, and surface properties of anodic aluminum oxide (AAO). We prepared nanoporous amorphous AAO films with different thicknesses (5 and 10 μm). Atomic force microscopy (AFM), contact angle (CA) measurements, two-probe electrical measurements, and nanoindentation were used to analyze the physical properties. By increasing fluences from 1015 to 1016 ions/cm2, CA is significantly changed up to about 40°, but the other properties hardly changed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号