共查询到17条相似文献,搜索用时 125 毫秒
1.
2.
3.
内电解-厌氧-好氧工艺处理制药废水试验研究 总被引:2,自引:0,他引:2
采用“内电解-厌氧-好氧”工艺处理混合制药废水,试验证明:在厌氧段HRT=120h,好氧段HRT=48h条件下,当混合废水进水CODcr约为18600mg/L时.总COD去除率可达90%以上,出水达到GB8978-96二级排放标准。 相似文献
4.
铁炭微电解-厌氧-好氧工艺处理制浆造纸废水 总被引:1,自引:1,他引:1
针对某制浆造纸废水的特性,采用铁炭微电解—厌氧—好氧组合处理工艺。实验结果表明:当进水CODCr为2 500 mg/L,色度为300倍时,铁炭微电解预处理,不仅去除了40%的CODCr和80%的色度,还大幅提高了废水的可生化性,B/C从0.23提高到0.42;微电解出水经过厌氧和好氧处理,CODCr去除率分别为70%和55%,最终出水CODCr在250 mg/L以下,色度为50倍,达到《造纸工业水污染物排放标准》(GB 3544—2001)二级排放标准。 相似文献
5.
本研究以啤酒厂污水为研究对象,采用厌氧-好氧工艺对啤酒废水进行处理,通过单因素实验考察温度、pH和时间对处理效果的影响。结果表明,厌氧-好氧工艺可以有效地降低啤酒废水的污染物浓度,最佳处理工艺条件为:厌氧条件下温度为35℃、pH为9、处理时间为2小时,好氧条件下温度为35℃、pH为8、处理时间为2小时。在最佳工艺条件下,啤酒废水的CODCr从1200 mg/L降低到32 mg/L,去除率为97.33%,氨氮从30 mg/L降低到7.354 mg/L,氨氮去除率为75.49%。此研究结果可为啤酒废水的处理提供理论依据及技术支撑。 相似文献
6.
兼氧-好氧工艺处理高浓度化工废水 总被引:30,自引:2,他引:30
采用兼氧--好氧联合工艺对高浓度难降解化工废水进行处理。论述了用该工艺处理化工废水时,温度、PH值、负荷、水力停留时间等因素对稳定性的影响。该工艺利用兼氧和好氧微生物对高浓度化工废水进行处理后,CODcr的去除率达95%以上,氨氮的去除率达70%以上,对色度有很好的去除效果,并且具有剩余污泥少、耐冲击负荷、费用低等优点,是一种高效、低能耗的废水处理工艺。 相似文献
7.
8.
9.
10.
11.
12.
13.
14.
Jian Yu Min Ji Po Lock Yue 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》1999,74(7):619-626
Aerobic degradation or polishing is an essential step in the combined anaerobic/aerobic treatment of wastewater. In this study, a type of porous glass beads was used for immobilization of microbial cells in a three‐phase aerobic fluidized bed reactor (AFBR) with an external liquid circulation. The effects of superficial gas and liquid velocities on bed expansion, solid and gas hold‐ups and specific oxygen mass transfer rate, kLa, were investigated. A tracer study showed that the mixing and flow pattern in the 8 dm3 reactor could be simulated by a non‐ideal model of two continuous stirred tank reactors (CSTRs) in series. By treating an effluent from an upflow anaerobic sludge blanket (UASB) digester, the distribution of suspended and immobilized biomass in the reactor as well as the kinetics of COD removal were determined. The specific oxygen mass transfer rate, kLa, at a superficial gas velocity of 0.7 cm s−1 dropped by about 30% from 32 h−1 in tap water to 22 h−1 after a carrier load of 15% (v/v) was added. The measured kLa further dropped by about 20% to 18 h−1 in the wastewater, a typical value of the bubbling fermenters with no stirring. Compared with the aerobic heterotrophs under optimum growth conditions, the microbes in this reactor which was fed with anaerobic effluent plus biomass behaved like oligotrophs and showed slow specific COD removal rates. This might be attributed to the presence of a significant amount of obligate anaerobes and facultative organisms in the aerobic reactor. This was confirmed by a relatively low intrinsic oxygen uptake rate of the microbial population in the reactor, 94 mg O2 dm−3 h−1 or 19 mg O2g VS−1 h−1. © 1999 Society of Chemical Industry 相似文献
15.
16.
高级氧化技术处理染料废水的研究进展 总被引:20,自引:2,他引:20
由于染料废水中含有高浓度难降解有机污染物,对其有效处理一直是个难题.综述了近几年国内外采用湿式氧化法、Fenton法、光化学与光催化氧化法、电化学法、臭氧氧化法、微波辅助氧化法和超声氧化法等高级氧化技术处理染料废水的进展情况,并指出了高级氧化技术在染料废水处理中的发展趋势. 相似文献
17.
Judy A Libra Frank Sosath 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2003,78(11):1149-1156
The treatment of a segregated textile wastewater containing reactive dyes was investigated in two continuous‐flow process trains using ozonation and biological processes. The degree of decolorization and dissolved organic carbon (DOC) removal achieved by ozonation followed by aerobic treatment (two‐stage) was compared with that found when an anaerobic and aerobic pretreatment was added (four‐stage). Although the biological pretreatment reduced color by ~70%, similar amounts of ozone were required in both trains to achieve high degrees of overall removal of color and DOC. In both trains, ozonation increased biodegradability in the following aerobic reactor, however, in order to reach ~80% overall DOC removal, a specific ozone absorption (A*) of ~6 gO3 gDOCo?1 was required and >50% of the DOC was mineralized in the ozone reactor. A comparison of cost estimates based on investment and operating costs for the process alternatives showed that a four‐stage train would reduce costs only if it enabled a decrease in A* to less than 2 gO3 gDOCo?1. Difficulties in comparing treatment processes for segregated vs full‐stream wastewaters are discussed. Copyright © 2003 Society of Chemical Industry 相似文献