首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
采用包埋铝和锌的方法在镁合金AZ91D表面制备了铝-锌合金化涂层,并且利用x射线衍射、能谱分析研究了该涂层的组织和耐腐蚀性能。该涂层外层为AlMg2Zn, Mg7Zn3 和Mg17Al12 金属间化合物层;内层为Mg17Al12金属间化合物分布于α-Mg晶界。研究表明,与镁合金基体相比较在质量分数为3.5wt.% NaCl扩渗层显示出较好的耐腐蚀性能。盐雾腐蚀说明,Al-Mg-Zn合金化扩渗层对于降低腐蚀速率起到有效作用。此外,合金化扩渗层与基体的结合是冶金结合,且涂层的显微硬度显著提高。  相似文献   

2.
Ti_(2)AlNb合金具有良好的工艺性能、综合力学性能和较低的密度等性能优势,是新型航空发动机的重要选材之一。为拓宽Ti_(2)AlNb合金的应用范围,需对传统Ti_(2)AlNb合金进行合金成分优化和工艺组织调控以进一步增强其高温抗氧化性能。本研究在传统Ti-Al-Nb三元合金体系基础上,综合设计Mo,Zr,W等合金复合化的方法提高Ti_(2)AlNb合金的抗氧化能力,通过对新型Ti_(2)AlNb合金在750℃和850℃的氧化增重行为分析、氧化层特征结构分析、表面氧化物种类和合金成分过渡分布分析等,发现Mo合金元素引起Ti_(2)AlNb合金在750℃上升至850℃时抗氧化性能的明显下降,Zr合金元素则始终保持着Ti_(2)AlNb合金良好的高温抗氧化能力;更为深入的截面试样SEM表征可将氧化层结构细分为氧化物层、富氧扩散层和组织演变层,Zr和W合金元素对850℃高温氧化过程中不同氧化层结构具有协同抑制作用,因此提出通过Zr和W合金元素复合的方法作为新型Ti_(2)AlNb合金抗氧化合金成分优化方向。  相似文献   

3.
钛合金表面加弧辉光离子渗镍铬及其性能研究   总被引:3,自引:0,他引:3  
采用加弧辉光离子渗金属新技术处理钛合金Ti5Al2.5Sn表面,研究了渗层的相组成特点,成分分布情况,评价了改性层的磨擦摩损性能,及与钛合金基体间的接触腐蚀相容性等。结果表明加弧辉光离子渗技术可以快速地在钛合金表面获得NiCr镀渗复合层。渗层由Ni3Ti等金属间化合物组成,其硬度、耐磨性能均高于离子注氮层,具有较高的抗含Cl^-1水溶液腐蚀性能,在含Cl^-1腐蚀环境中与钛合金基体接触相容。  相似文献   

4.
TiAl合金表面Si-Al-Y共渗层的组织及高温抗氧化性能   总被引:1,自引:0,他引:1  
通过在1050℃下Si-Al-Y扩散共渗0~4 h在TiAl合金表面制备了Al、Y改性的硅化物抗氧化渗层, 分析了共渗层的结构及相组成, 并对其组织形成机理及高温抗氧化性能进行了研究。结果表明: 1050℃共渗4 h所制备的共渗层具有多层结构, 由外向内依次为TiSi2外层、(Ti,X)5Si4及(Ti,X)5Si3(X表示Nb, Cr)中间层、TiAl2和γ-TiAl内层及富Al的过渡层, 其中Y元素主要富集于共渗层的外层和中间层。不同时间共渗的结果表明, Si-Al-Y共渗层的形成是一个在基体表面先沉积Al, 后沉积Si的有序过程。经1000℃高温氧化20 h后共渗层表面形成了由TiO2外层及SiO2·Al2O3次外层组成的致密氧化膜; Y的氧化物主要存在于氧化膜与残余共渗层的界面处, 能够有效地增强膜层的附着力。  相似文献   

5.
Titanium aluminides are considered as replacements for superalloys in applications in gas turbine engines because of their outstanding properties. Ti3Al has a superior creep strength up to 815° C, but has poor oxidation resistance above 650° C. Two approaches can be followed to improve the oxidation resistance of Ti3Al above 650° C. One is alloying and the other obtaining a protective surface coating. Niobium was found to improve the oxidation resistance, when added as an alloying element. Recent investigations showed that a TiAl3 surface layer considerably improves the oxidation resistance of titanium. In the present work, a TiAl3 layer was obtained on a Ti-14Al-24Nb (wt%) alloy using a pack aluminizing process. The cyclic oxidation behaviour of aluminized and uncoated samples was evaluated.  相似文献   

6.
Abstract

The pack aluminisation process is normally applied at temperatures >973 K at which the mechanical properties of alloy steels would degrade. Thus, the present study was undertaken to apply this process to aluminising the alloy steels at temperatures <973 K in order to increase their high temperature oxidation resistance while maintaining their microstructure and hence mechanical strength and creep resistance. A type of commercial alloy steel P92 (9Cr–1Mo) was used for the present study. Pack powder mixtures consisting of Al, AlCl3 (anhydrous) or NH4Cl and Al2O3 were used to carry out the process. The aluminising temperature was varied from 773 to 973 K, pack Al content from 1 to 30 wt-% and aluminising time from 1 to 16 h to investigate their effects on the coating growth kinetics in the AlCl3 activated packs. It was observed that all the coatings formed in the AlCl3 activated packs were of a single layer structure with Fe2Al5 as the main coating phase. It was established that the interrelationship between the thickness h (in μm) of this coating layer and aluminising temperature T (in K), time t (in h) and pack Al content W (in wt-%) can be described by h=83005·9W1/2t1/2e?73330/(RT). In the NH4Cl activated packs, it was found that coating formation and dissolution took place simultaneously at 923 K and stable growth of a coating layer was only possible when the pack Al content was sufficiently high. However, the coatings formed in these packs had highly uneven regions.  相似文献   

7.
Abstract

The pack aluminising process is normally conducted on alloy steels at temperatures higher than 900°C at which mechanical properties of steels would degrade. This study aims to investigate the feasibility of pack aluminising a commercial 9Cr – 1Mo alloy steel at 650°C in an attempt to increase its high temperature oxidation and corrosion resistance without adversely affecting its mechanical properties and consequently to increase its long-term structural operating temperatures to up to 700°C. It was demonstrated that this could be achieved using packs containing AlCl3 as an activator and elemental Al as a depositing source. The coatings formed under these conditions consisted of an outer Fe14 Al86 layer and an inner FeAl3 layer with an abrupt interface between the coating and substrate, suggesting that the coating is formed via a mechanism of the inward Al reaction – diffusion. The pack Al content was varied from 1 to 6 wt-% to investigate its effects on the coating formation process. It was found that the pack Al content in this range affected only the coating thickness and therefore the growth rate of the coating, but not the surface Al concentration. A post-aluminising heat treatment study was also undertaken for an aluminised specimen at 650°C under an argon atmosphere to investigate the kinetics of converting the brittle Fe14 Al86 and FeAl3 phase layers to a more ductile FeAl phase layer. It was observed that this was a slow process requiring 1132 h for an initial coating layer thickness of 33μm. The coating after the conversion consisted of a uniform top FeAl layer with all other alloying elements in the solid solution and a diffusion zone underneath.  相似文献   

8.
A copper alloy dispersion strengthened by TiN was prepared by external nitridation in combination with mechanical alloying. After mechanical alloying pure Cu and Ti powders, a Cu-3wt.%Ti solid solution was formed. These powders were nitrided at 1073 K, resulting in a TiN layer on the surface of the copper powders. Further mechanical alloying was very efficient in breaking down the TiN surface layers. A very fine uniform distribution of nanosized TiN was obtained. The resulting copper alloy had a grain size of about 150 nm in diameter after annealing at 1173 K in vacuum for 5.4 ks, and showed a very high room temperature hardness value of 251 kg mm−2 which was independent of annealing temperature below 1173 K.  相似文献   

9.
HK40钢的渗铝新工艺及抗碳化腐蚀性能研究   总被引:3,自引:0,他引:3  
采用金相显微镜(OM)、扫描电子显微镜(SEM)、X射线衍射仪(XRD)、X射线能谱分析仪(EDAX)等仪器设备研究了HK40钢的渗铝及其抗碳化腐蚀能力.试验结果表明,通过调整渗剂中特种添加剂与铝粉的比例和渗铝温度等工艺参数,可达到控制渗铝层相组成的目的.与传统一段法固体粉末渗铝工艺相比,两段法固体粉末渗铝工艺可提高渗速约60%.HK40钢的渗铝层由NiAl相和Ni3Al相组成时,其抗碳化腐蚀能力得到明显提高.  相似文献   

10.
The SiC powder with a SiO2 protective layer is used as the reinforcements for 2014 Al/SiCp composites to suppress the reaction between the Al matrix and the SiC particle. 2014 Al/SiCp composites were fabricated by vacuum hot pressing (VHP) and subsequent extrusion using 2014 Al powders and the SiC particles covered with a SiO2 layer. The interfacial product was found to be Mg spinel (MgAl2O4) formed mainly by the chemical reactions of the SiO2 layer covered on SiC particles with the Mg, Al in the 2014 Al alloy matrix. Also the interfacial bonding strength of the composites was investigated using push-out tests of SiC rods with the SiO2 oxidation layer, which were processed within 2014 Al alloy.  相似文献   

11.
《Materials Letters》2007,61(19-20):4058-4061
To improve the wear resistance of a popular aluminum alloy AA 6061, a 1.5 mm thick hard surface layer consisting of Ni–Al and Ti–Al intermetallic compounds was synthesized on the alloy by laser surface alloying technique. NiTi powder was preplaced on the aluminum alloy substrate and irradiated with a high-power CW Nd:YAG laser in an argon atmosphere. With optimized processing parameters, a modified surface layer free of cracks and pores was formed by reaction synthesis of Al with Ni and Ti. X-ray diffractometry (XRD) confirmed the main phases in the layer to be TiAl3 and Ni3Al. The surface hardness increased from below 100 HV for untreated AA 6061 to more than 350 HV for the laser-treated sample. Accompanying the increase in hardness, the wear resistance of the modified layer reached about 5.5 times that of the substrate.  相似文献   

12.
采用可控气氛磨损试验机测试含有Ni3Al相的K417 G合金在不同相对湿度空气、真空、氧气、氮气、二氧化碳、氢气和氩气下的摩擦磨损性能,用SEM观察磨损表面形貌,基于线弹性力学计算表面裂纹应力强度因子KI,依据能量学计算合金元素的环境敏感性,研究合金的环境致脆磨损机理。结果表明:磨损工况下,高相对湿度空气中的水蒸汽是导致K417G合金发生氢致脆性磨损的腐蚀介质,水蒸汽与合金中的γ′-Ni3Al反应生成的原子态H导致环境脆性,环境脆性裂纹源在γ/γ′界面以及碳化物与合金基体界面形核,裂纹既沿着γ/γ′界面以及碳化物与合金基体界面扩展,又进入γ′晶粒;合金表面裂纹的应力强度因子KI小于合金的断裂韧性KIC,接触应力不导致磨损表面裂纹;能量学计算表明,空气下,磨损表面裂纹的产生与Al的含量有关,Al的临界含量为5.53%(原子分数)。  相似文献   

13.
李轩  田进  田伟  谢文玲  李秀兰 《无机材料学报》2017,32(10):1102-1108
采用扩散共渗的方法在TC4合金表面制备了Zr增效硅化物涂层, 研究了涂层在600℃时的摩擦磨损性能, 讨论了其磨损机制。结果表明: 所制备的涂层具有多层结构, 由(Ti, X)Si2 (X代表Zr, Al和V)外层, TiSi中间层和Ti5Si4+Ti5Si3内层组成; 渗剂中添加Zr能够抑制涂层的生长速率, 有利于降低涂层的内应力, 改善其组织致密性。涂层的硬度明显高于TC4合金, 且由外向内呈梯度降低趋势。高温摩擦磨损试验结果表明, Zr增效硅化物涂层能够为TC4合金提供良好的高温磨损防护; 与GCr15对磨时, 涂层的表面只发生了轻微的磨损, 主要为GCr15在其磨损面的擦涂和一定程度的氧化磨损; 与Al2O3球对磨时, 磨损机制为犁削磨损、疲劳磨损、黏着磨损和氧化磨损。  相似文献   

14.
Gao ZL  Zhang K  Yuen MM 《Nanotechnology》2011,22(26):265611
High quality vertically aligned carbon nanotube (VACNT) arrays have been synthesized on bulk Al alloy (Al6063) substrates with an electron-beam (E-beam) evaporated Fe catalyst using low pressure chemical vapor deposition (LPCVD). The pretreatment process of the catalyst was shown to play a critical role. This was studied comprehensively and optimized to repeatedly grow high quality VACNT arrays within a wide range of thicknesses of catalyst layer (2-11 nm) and acetylene (C(2)H(2)) flow rates (100-300 sccm). The thermal performance of the resulting VACNT arrays was evaluated. The minimum interfacial thermal resistance of the Si/VACNT/Al interfaces achieved so far is only 4 mm(2) K W(-1), and the average value is 14.6 mm(2) K W(-1).  相似文献   

15.
为了提高铌合金的抗高温氧化性能,先对铌合金C103进行包埋渗铝处理,再进行微弧氧化(MAO)处理获得Al2O_3陶瓷膜。对涂层的形貌、硬度、成分及高温氧化增重进行分析,通过单因素法优选了微弧氧化电解液配方。采用最佳电解液配方制备复合涂层(MAO/Al/C103),并与仅经包埋渗铝制备的涂层(Al/C103)进行对比分析,研究了复合涂层的抗高温氧化性能。结果表明:根据MAO膜层的硬度和厚度,获得微弧氧化的最佳电解液配方为10.0 g/L NaAlO_2+5.0 g/L NaOH+7.0 g/L Na_2WO_4+5.0 g/L NaF+2.5 g/L Na_2EDTA;在1 100℃高温氧化下,MAO/Al/C103试样氧化10 h的增重为5.5 mg/cm~2,小于Al/C103试样的9.4 mg/cm~2,表现出更好的抗氧化性。  相似文献   

16.
用真空感应渗碳方法对Ti6Al4V钛合金进行高速渗碳,研究了渗碳层在HF溶液中的腐蚀行为。对腐蚀前后渗碳层的相结构和形貌的分析发现:对Ti6Al4V钛合金高速渗碳后,在表面生成一层TiC和CTi0.42V1.58复合化合物相的渗碳层。因为表面有渗碳层,Ti6Al4V钛合金在浓度为0.2%的HF中?泡其腐蚀速率从4.65×10-10 g·m-2·h-1降低到3.3×10-10 g·m-2·h-1。电化学腐蚀测试结果表明,其自腐蚀电位从未渗碳时的-0.94 V升高到-0.68 V,腐蚀电流密度从4.10 mA·cm-2降至1.65 mA·cm-2,极化电阻从6.36 Ω·cm2增大到15.8 Ω·cm2,Rt从0.2 Ω·cm2增大到5.7 Ω·cm2。渗碳层具有n型半导体特性,未渗碳样品具有p型半导体特性。Ti6Al4V钛合金渗碳后,在腐蚀过程中电子转移的阻力增大,使耐蚀性提高。F-对Ti6Al4V钛合金渗碳层的腐蚀机理,主要是析氢腐蚀。  相似文献   

17.
Effect of Al alloying in small concentrations on oxidation behaviour of molybdenum di-silicide (MoSi2) at 1200°C has been investigated. MoSi2–2.8 and 5.5 at.% Al alloys possessed 0.5, and 2.5 at.% Al in solid solution, respectively, and dispersoids of -Al2O3. On the other hand, MoSi2–9 at.% Al alloy possessed 3.1 at.% in solid solution in MoSi2 and Mo(Si,Al)2 phase, besides -Al2O3 dispersoids. The kinetics of oxidation of all the alloys followed a parabolic rate law. The oxidation rate was higher in the MoSi2–Al alloys in comparison to MoSi2, with weight gain values varying by an order of magnitude. The MoSi2–5.5 and 9 at.% alloys demonstrated closely related oxidation characteristics and proved to be more resistant to oxidation than MoSi2–2.8 at.% Al alloy. The oxide scale comprised of SiO2 in MoSi2, mixture of SiO2 and -Al2O3 in MoSi2–2.8 at.% Al alloy, and -Al2O3 in case of MoSi2–5.5 and 9 at.% Al alloys. The mechanism of oxidation has been analysed using thermodynamic and kinetic considerations.  相似文献   

18.
Mechanical alloying is a powder processing technique used to process materials farther from equilibrium state. This technique is mainly used to process difficult to alloy materials in which the solid solubility is limited, and to process materials where non-equilibrium phases cannot be produced at room temperature through conventional processing techniques. In the present work, mechanical alloying/milling of selected compositions in the Al-Cu binary alloy system was carried out at a ball-to-powder weight ratio (BPR) of 2 : 1, to investigate alloying and subsequent heat treatment on microstructural changes as a result of short milling times. Copper-aluminum powder mixtures containing 5, 20, and 40 wt% Al (11, 37, and 61 at% Al, respectively) were subjected to mechanical alloying, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning calorimetry (DSC), after mechanical alloying and subsequent heat treatment. Nanometer-sized grains were observed in the as-milled crystalline powders in all compositions. Crystallite sizes were calculated using the Scherrer formula and found to be in the order of 10-20 nm after 360 minutes of milling time for all compositions. The XRD data show considerable solid solubility extension in these powders, and formation of intermetallic phases due to mechanical alloying and subsequent annealing. These changes are discussed in the context of the Al-Cu phase diagram.  相似文献   

19.
The fine structure in the Fe-Al alloy layer of a new hot dip aluminized steel (HDA) was examined by means of X-ray diffractometry (XRD), electron diffraction technique, etc. The test results indicated that the Fe-Al alloy layer of the new aluminized steel mainly composed of Fe3Al, FeAl and α-Fe (Al) solid solution. There was no brittle phase containing higher aluminum content, such as FeAl3 (59.18% Al) and Fe2Al7 (62–93% Al). The tiny cracks and embrittlement, formerly caused by these brittle phases in the conventional aluminum-coated steel, were effectively eliminated. There was no microscopic defect (such as tiny cracks, pores or loose layer) in the coating. This is favourable to resist high temperature oxidation and corrosion of the aluminized steel.  相似文献   

20.
(Ni,Pd)Al coating, prepared by low pressure pack cementation on the Ni-base superalloy M38 where Pd-20 wt pct Ni alloy was predeposited, consists of a single β-(Ni,Pd)Al phase. The initial isothermal oxidation behavior of (Ni,Pd)Al coating was investigated by TGA, XRD, SEM/EDS at 800~1100℃. Results show that oxidation kinetics accord preferably with parabolic law at 800, 900 and 1100℃, but not at 1000℃.θ-Al2O3 was observed at 800~1100℃. It is found that Pd plays an important role in accelerating the diffusion of Ti from the substrate to the coating surface in the aluminide coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号