首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Scanning electron microscopy (SEM) has produced a wealth of novel images that have significantly complemented our perception of biological structure and function, derived initially from transmission electron microscopy (TEM) information. SEM is a surface imaging technology, and its impact at the subcellular level has been restricted by reduced resolution in comparison with TEM. Recently, SEM resolution has been considerably improved by the advent of high-brightness sources used in field-emission instruments (FEISEM) which have produced resolution of around 1 nm, virtually equivalent to TEM “working resolution.” Here we review our findings in the use of FEISEM in the imaging of nuclear envelopes and their associated structures, such as nuclear pore complexes, and the relationships of structure and function. FEISEM allows the structurally orientated cell biologist to visualise, directly and in three dimensions, subcellular structure and its modulation with a view to understanding its functional significance.  相似文献   

2.
Correlative microscopy is a collection of procedures that rely upon two or more imaging modalities to examine the same specimen. The imaging modalities employed should each provide unique information and the combined correlative data should be more information rich than that obtained by any of the imaging methods alone. Currently the most common form of correlative microscopy combines fluorescence and electron microscopy. While much of the correlative microscopy in the literature is derived from studies of model cell culture systems we have focused, primarily, on correlative microscopy in tissue samples. The use of tissue, particularly human tissue, may add constraints not encountered in cell culture systems. Ultrathin cryosections, typically used for immunoelectron microscopy, have served as the substrate for correlative fluorescence and electron microscopic immunolocalization in our studies. In this work, we have employed the bifunctional reporter FluoroNanogold. This labeling reagent contains both a fluorochrome and a gold-cluster compound and can be imaged by sequential fluorescence and electron microscopy. This approach permits the examination of exactly the same sub-cellular structures in both fluorescence and electron microscopy with a high level of spatial resolution.  相似文献   

3.
The combination of high-resolution chemically sensitive soft X-ray microscopy with stereo imaging and processing techniques presented here forms a novel tool for the investigation of aqueous colloidal systems. Information about the spatial distribution within the sample is provided with small calculation effort processing just a pair of stereo micrographs. Thus, the extension towards investigation of dynamical behaviour is possible on the part of the experiment as well as of the processing.
The potential of this technique is demonstrated with applications in aqueous soil and clay samples. Within these samples, haematite particles are identified taking advantage of the elemental contrast at the Fe-L edge around E = 707 eV. In combination with stereo microscopy, information about spatial arrangements are revealed and correlated to electrostatic interactions of the different mixtures, addressing to an actual question of soil scientists. The technique allows in-situ sample manipulation, which is demonstrated by a test specimen where particles were added during imaging.  相似文献   

4.
The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.  相似文献   

5.
Imaging of gap junction proteins, the connexins, has been performed in tissue culture cells both by labeling of connexins with immunocytochemical tags and by cloning and expressing chimeras of connexins and fluorescent proteins such as Green Fluorescent Protein. These two approaches have been used to gain information about protein localization or trafficking at light microscopic resolution. Electron microscopy provides higher resolution; however, analysis of electron micrographs of unlabeled connexins has been generally limited to recognition of gap junction structures. Immunolabeling of gap junction proteins in whole cells at the electron microscopic level has been difficult to achieve because of the fixation sensitivity of most gap junction antibodies. To obtain reasonable sensitivity, immunoperoxidase procedures are typically employed, and these suffer from relatively poor resolution. Here we describe the combination of tyramide signal amplification techniques and fluorescence photooxidation for higher resolution immunolocalization studies for correlative light and electron microscopic imaging. By using correlative microscopy, we can not only localize connexin pools or structures, but also discover what other cellular substructures interact with gap junction proteins. The use of tyramide signal amplification techniques is necessary to increase fluorescence levels that have decreased due to increased specimen fixation required to maintain cell ultrastructure. The fluorescence photooxidation technique provides a high-resolution method for staining of proteins in cells. Unlike colloidal gold-based methods, fluorescence photooxidation allows for three-dimensional localization using high-voltage electron microscopy.  相似文献   

6.
We applied atomic force microscopy (AFM) to investigate the surface structure of barley chromosome in combination with a chemical treatment method. As a result, we have obtained high-resolution topographic images of granular structures with a diameter of ca. 50 nm on the surface of critical-point dried metaphase chromosomes. Treatment with 2M NaCl significantly modified the chromosome surface structure: surface roughness was increased and chromosome thickness was decreased. The NaCl treatment extracted two major proteins with molecular weights of 4000 and 20,000 Da. These proteins might be belonging to non-histone protein families that do not contain any aromatic amino acid. The results demonstrate the advantage of the combined method of high-resolution AFM imaging and chemical treatments for understanding nano-scale surface structures of the chromosome.  相似文献   

7.
Integrated information on ultrastructural surface texture and chemistry increasingly plays a role in the biomedical sciences. Light microscopy provides access to biochemical data by the application of dyes. Ultrastructural representation of the surface structure of tissues, cells, or macromolecules can be obtained by scanning electron microscopy (SEM). However, SEM often requires gold or coal coating of biological samples, which makes a combined examination by light microscopy and SEM difficult. Conventional histochemical staining methods are not easily applicable to biological material subsequent to such treatment. Atomic force microscopy (AFM) gives access to surface textures down to ultrastructural dimensions without previous coating of the sample. A combination of AFM with conventional histochemical staining protocols for light microscopy on a single slide is therefore presented. Unstained cores were examined using AFM (tapping mode) and subsequently stained histochemically. The images obtained by AFM were compared with the results of histochemistry. AFM technology did not interfere with any of the histochemical staining protocols. Ultrastructurally analyzed regions could be identified in light microscopy and histochemical properties of ultrastructurally determined regions could be seen. AFM-generated ultrastructural information with subsequent staining gives way to novel findings in the biomedical sciences. Microsc. Res. Tech., 2009. © 2009 Wiley-Liss, Inc.  相似文献   

8.
Atomic force microscopy (AFM) is an emerging technique for imaging biological samples at subnanometer resolution; however, the method is not widely used for cell imaging because it is limited to analysis of surface topology. In this study, we demonstrate identification and ultrastructural imaging of microfilaments using new approaches based on AFM. Photodynamic therapy (PDT) with a new chlorin-based photosensitizer DH-II-24 induced cell shrinkage, membrane blebbing, and reorganization of cytoskeletons in bladder cancer J82 cells. We investigated cytoskeletal changes using confocal microscopy and atomic force microscopy. Extracellular filaments formed by PDT were analyzed with a tandem imaging approach based on confocal microscopy and atomic force microscopy. Ultrathin filaments that were not visible by confocal microscopy were identified as microfilaments by on-stage labeling/imaging using atomic force microscopy. Furthermore, ultrastructural imaging revealed that these microfilaments had a stranded helical structure. Thus, these new approaches were useful for ultrastructural imaging of microfilaments at the molecular level, and, moreover, they may help to overcome the current limitations of fluorescence-based microscopy and atomic force microscopy in cell imaging.  相似文献   

9.
We describe a technique for studying living cells with the atomic force microscope (AFM) in tapping mode using a thermostated, controlled-environment culture system. We also describe the integration of the AFM with bright field, epifluorescence and surface interference microscopy, achieving the highest level of integration for the AFM thus far described. We succeeded in the continuous, long-term imaging of relatively flat but very fragile cytoplasmic regions of COS cells at a lateral resolution of about 70 nm and a vertical resolution of about 3 nm. In addition, we demonstrate the applicability of our technology for continuous force volume imaging of cultured vertebrate cells.
The hybrid instrument we describe can be used to collect simultaneously a diverse variety of physical, chemical and morphological data on living vertebrate cells. The integration of light microscopy with AFM and steady-state culture methods for vertebrate cells represents a new approach for studies in cell biology and physiology.  相似文献   

10.
Atomic force microscopy (AFM) has been used to image a wide variety of cells. Fixed and dried-coated, wet-fixed or living cells were investigated. The major advantage of AFM over SEM is the avoidance of vacuum and electrons, whereas imaging can be done at environmental pressure and in aqueous conditions. Evidence of the successful application of AFM in biological imaging is provided by comparing results of AFM with SEM and/or TEM. In this study, we investigated surface and submembranous structures of living and glutaraldehyde-fixed colon carcinoma cells, skin fibroblasts and liver macrophages by AFM. Special attention was paid to the correct conditions for the acquisition of images of the surface of these cells, because quality SEM examinations have already been abundantly presented.
AFM imaging of living cells revealed specific structures, such as the cytoskeleton, which were not observed by SEM. Membrane structures, such as ruffles, lamellipodia, microspikes and microvilli, could only clearly be observed after fixing the cells with 0.1% glutaraldehyde. AFM images of living cells were comparable to SEM images of fixed, dried and coated cells, but contained a number of artefacts due to tip–sample interaction. In addition, AFM imaging allowed the visualization of cytoplasmic submembranous structures without the necessity for further preparative steps, allowing us: (i) to follow cytoskeletal changes in fibroblasts under the influence of the microfilament disrupting agent latrunculin A; (ii) to study particle phagocytosis in macrophages. Therefore, in spite of the slow image acquisition of the AFM, the instrument can be used for high-resolution real-time studies of dynamic changes in submembranous structures.  相似文献   

11.
In this mini-review we discuss our recent findings on imaging and manipulation of biological macromolecular structures by atomic force microscopy (AFM). In the first part of this review, we focus on high-resolution imaging of selected biological samples. AFM images of membrane proteins have revealed detailed conformational features related to identifiable biological functions. Different self-assembling behaviors of short peptides into supramolecular structures on various substrates under controlled environmental conditions have been systematically studied with AFM imaging. In the second part, we present a novel nano-manipulation technique for manipulating, isolating, amplifying, and sequencing of individual DNA molecules, which may find unique applications in the analysis of difficult sequence structures. Finally, we discuss how to characterize the elasticity of individual biomolecules and live cells. These results demonstrate that not only the high resolution capacity of the AFM is suited to resolve certain biological questions, but can also be applied to single molecule isolation and biomechanical analysis with its unique advantages.  相似文献   

12.
A variety of biological samples can be imaged by the atomic force microscope (AFM) under environments that range from vacuum to ambient to liquid. Generally imaging is pursued to evaluate structural features of the sample or perhaps identify some structural changes in the sample that are induced by the investigator. In many cases, AFM images of sample features and induced structural changes are interpreted in general qualitative terms such as markedly smaller or larger, rougher, highly irregular, or smooth. Various manual tools can be used to analyze images and extract more quantitative data, but this is usually a cumbersome process. To facilitate quantitative AFM imaging, automated image analysis routines are being developed. Viral particles imaged in water were used as a test case to develop an algorithm that automatically extracts average dimensional information from a large set of individual particles. The extracted information allows statistical analyses of the dimensional characteristics of the particles and facilitates interpretation related to the binding of the particles to the surface. This algorithm is being extended for analysis of other biological samples and physical objects that are imaged by AFM.  相似文献   

13.
A novel focused ion beam-based technique is presented for the read-out of microradiographs of Caenorhabditis elegans nematodes generated by soft x-ray contact microscopy (SXCM). In previous studies, the read-out was performed by atomic force microscopy (AFM), but in our work SXCM microradiographs were imaged by scanning ion microscopy (SIM) in a focused ion beam/scanning electron microscope (FIB/SEM). It allows an ad libitum selection of a sample region for gross morphologic to nanometric investigations, with a sequence of imaging and cutting. The FIB/SEM is less sensitive to height variation of the relief, and sectioning makes it possible to analyse the sample further. The SXCM can be coupled to SIM in a more efficient and faster way than to AFM. Scanning ion microscopy is the method of choice for the read-out of microradiographs of small multicellular organisms.  相似文献   

14.
In recent years, the application of atomic force microscopy (AFM) to biological systems has highlighted the potential of this technology. AFM provides insights into studies of biological structures and interactions and can also identify and characterize a large panel of pathogens, including viruses. The Flaviviridae family contains a number of viruses that are important human and animal pathogens. Among them, Dengue virus causes epidemics with fatal outcomes mainly in the tropics. In this study, Dengue virus is visualized for the first time using the in air AFM technique. Images were obtained from a potassium-tartrate gradient-purified virus. This study enhances the application of AFM as a novel tool for the visualization and characterization of virus particles. Because flavivirus members are closely related, studies of the morphologic structure of the Dengue virus can reveal strategies that may be useful to identify and study other important viruses in the family, including the West Nile virus.  相似文献   

15.
With semiconductor structures reaching the nanometer scale, heat conductivity measurements on the mesoscopic range of some tens of nanometers become an increasingly important aspect for the further improvement in digital processing and storage. Also the attempt to use atomic-force microscopy (AFM) technology for high-density data storage by writing information bits as nanometer-sized indentations into a polymer substrate with a heated cantilever tip asks for a careful investigation of the nano-scale heat-conductivity properties of polymers. Furthermore, in many AFM imaging applications, heat conductivity can provide additional information about the material the imaged structures consist of. In this respect, heat conductivity can also become very interesting in studies of usually quite heterogeneous biological samples, if the resolution can attain the nanometer range. In standard scanning thermal microscopy application, the tip forms a thermocouple, which precludes high-resolution imaging, as thermocouples cannot be made sufficiently small. In this paper, which focuses on biological applications, we demonstrate that by using an ultra sharp AFM cantilever with a Joule heating element above the tip structure different molecular components can be distinguished thanks to their different heat-conductivity properties. In this case, the resolution is determined by the actual tip size, and it can reach 10nm.  相似文献   

16.
Fluorescent quantum dots (QDs) are a new class of fluorescent label and have been extensively used in cell imaging. Streptavidin-conjugated QDs have a diameter of ca. 10–15 nm; therefore when used as probes to label cell-surface biomolecules, they can provide contrast enhancement under atomic force microscopy (AFM) and allow specific proteins to be distinguished from the background. In addition, the size and fluorescent properties potentially make them as probes in correlative fluorescence microscopy (FM) and AFM. In this study, we tested the feasibility of using QD-streptavidin conjugates as probes to label wheat germ agglutinin (WGA) receptors on the membrane of human red blood cells (RBCs) and simultaneously obtain fluorescence and AFM images. The results show that the distribution of QDs labeled on human RBCs was non-uniform and that the number of labeled QDs on different erythrocytes varied significantly, which perhaps indicates different ages of the erythrocytes. Thus, QDs may be employed as bifunctional cell-surface markers for both FM and AFM to quantitatively investigate the distribution and expression of membrane proteins or receptors on cell surface.  相似文献   

17.
Sample preparation procedures for biological atomic force microscopy   总被引:4,自引:0,他引:4  
Since the late 1980s, atomic force microscopy (AFM) has been increasingly used in biological sciences and it is now established as a versatile tool to address the structure, properties and functions of biological specimens. AFM is unique in that it provides three-dimensional images of biological structures, including biomolecules, lipid films, 2D protein crystals and cells, under physiological conditions and with unprecedented resolution. A crucial prerequisite for successful, reliable biological AFM is that the samples need to be well attached to a solid substrate using appropriate, nondestructive methods. In this review, we discuss common techniques for immobilizing biological specimens for AFM studies.  相似文献   

18.
High-resolution surface imaging by atomic force microscopy (AFM) of particulate materials is often problematic, principally as a result of the large height (z) variations in sample topography that either prevent the probe scanning over the particle or cause probe self-imaging. This paper reports a novel method of embedding thermally sensitive particulate and fibrous materials which overcomes many of these problems and facilitates AFM imaging of these difficult materials. The process involves partial embedding of the sample in a cyanoacrylate film polymerized at room temperature. The sample heating required in currently used methods of particulate embedding is avoided and the method is therefore suitable for thermolabile materials. The cyanoacrylate film provides a flat hard surface which is ideal for AFM imaging, and the method has allowed successful imaging of relatively large particulate and fibrous samples such as starch granules and cellulose fibres. The cyanoacrylate has the added benefit that shrinkage holes in the film allow easy visual identification of areas where the film may have partially covered the sample.  相似文献   

19.
Atherogenesis is a pathological condition in which changes in the ultrastructure and in the localization of proteins occur within the vasculature during all stages of the disease. To gain insight in those changes, high-resolution imaging is necessary. Some of these changes will only be present in a small number of cells, positioned in a 'sea' of non-affected cells. To localize this relatively small number of cells, there is a need to first navigate through a large area of the sample and subsequently zoom in onto the area of interest. This approach enables the study of specific cells within their in vivo environment and enables the study of (possible) interactions of these cells with their surrounding cells/environment. The study of a sample in a correlative way using light and electron microscopy is a promising approach to achieve this; however, it is very laborious and additional ultrastructural techniques might be very valuable to find the places of interest.
In this report we show that the focused ion beam-scanning electron microscope is a powerful tool to study biological specimens in a correlative way. With this microscope one can scan for the area of interest at low magnification, in this case the atherosclerotic plaque, and subsequently zoom in, for further analysis on an ultrastructural level, rendering valuable and detailed two- and three-dimensional information of, in this case, the endothelial cells and the vessel wall. Moreover, in combination with pre-embedment labelling of surface exposed antigens, the method allows insight into the 3D distribution of these markers.  相似文献   

20.
Zink T  Deng Z  Chen H  Yu L  Liu FT  Liu GY 《Ultramicroscopy》2008,109(1):22-31
Atomic force microscopy (AFM) enables high-resolution three-dimensional (3D) imaging of cultured bone marrow-derived mast cells. Cells were immobilized by a quick centrifugation and fixation to preserve their transient cellular morphologies followed by AFM characterization in buffer. This "fix-and-look" approach preserves the structural integrity of individual cells. Well-known membrane morphologies, such as ridges and microvilli, are visualized, consistent with prior electron microscopy observations. Additional information including the 3D measurements of these characteristic features are attained from AFM topographs. Filopodia and lamellopodia, associated with cell spreading, were captured and visualized in three dimensions. New morphologies are also revealed, such as high-density ridges and micro-craters. This investigation demonstrates that the "fix-and-look" approach followed by AFM imaging provides an effective means to characterize the membrane structure of hydrated cells with high resolution. The quantitative imaging and measurements pave the way for systematic correlation of membrane structural features with the biological status of individual cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号