共查询到19条相似文献,搜索用时 125 毫秒
1.
为了提高推荐算法评分预测的准确度,解决冷启动用户推荐问题,在TrustWalker模型基础上提出一种基于用户偏好的随机游走模型——PtTrustWalker。首先,利用矩阵分解法对社会网络中的用户、项目相似度进行计算;其次,将项目进行聚类,通过用户评分计算用户对项目类的偏好和不同项目类下的用户相似度;最后,利用权威度和用户偏好将信任细化为不同类别下用户的信任,并在游走过程中利用信任用户最高偏好类中与目标物品相似的项目评分进行评分预测。该模型降低了噪声数据的影响,从而提高了推荐结果的稳定性。实验结果表明,PtTrustWalker模型在推荐质量和推荐速度方面相比现有随机游走模型有所提高。 相似文献
2.
《计算机应用与软件》2016,(5)
用户冷启动是推荐系统的一个重要问题。传统的推荐系统使用迁移学习的方法来解决这个问题,即利用一个领域的评分信息或者标签预测另外一个领域的用户和物品评分。上述迁移学习模型通常假设两个领域没有重叠的用户和物品,与上述假设不同,很多情况下系统可以获取同一用户在不同领域的数据。针对这种数据,提出一种新的推荐系统冷启动模型—cross SVD&GBDT(CSGT),通过有效利用重叠用户的信息来解决用户冷启动问题。具体地,首先提出新模型获取用户和物品的特征,然后利用GBDT模型进行训练。实验数据表明,在豆瓣数据集中corss SVD&GBDT可以得到比传统方法性能更高、鲁棒性更强的实验结果。 相似文献
3.
为解决用户冷启动问题,提出一种基于随机森林-马尔可夫链相结合的方法。利用随机森林对原始数据进行有监督分类,为特征属性与商品标签建立关联,以此形成第一层推荐列表;利用马尔可夫优良的动态时效性以及最大信息熵原理去除冗余信息,在第一层的列表的基础上进行实时推荐的第二层推荐列表,依次类推形成K层推荐列表。通过MovieLens数据集验证该模型相较于已有的模型具有较高的准确率和召回率。 相似文献
4.
5.
6.
在推荐系统中,用户冷启动问题是传统协同过滤推荐系统中一直存在的问题。针对这个问题,在传统协同过滤算法的基础上,提出一种新的解决用户冷启动问题的混合协同过滤算法,该算法在计算用户相似性时引入用户信任机制和人口统计学信息,综合考虑用户的属性相似性和信任相似性。同时,算法还在用户近邻的选取上做了一些改进。实验表明该算法有效缓解了传统协同过滤推荐系统中的用户冷启动问题。 相似文献
7.
冷启动一直是推荐系统领域中被密切关注的问题,针对新注册用户冷启动的问题,文中提出了一种融合用户人口统计学信息与项目流行的推荐模型.首先对训练集用户进行聚类,将训练集用户划分为若干类.然后计算新用户与所属类别中其他用户之间的距离,选择其近邻用户集,在评分计算时综合考虑项目流行度对推荐效果的影响,进而为目标用户推送感兴趣的... 相似文献
8.
随着服务型计算的兴起,大量跨领域电子服务应运而生。用户要从众多服务中挑选出适合自己且可信的服务十分困难,因而提出高效的服务推荐算法十分必要。传统的协同推荐方法存在冷启动、数据稀疏以及实时性不好等问题,在评分数据较少时推荐效果不佳。为获得更好的推荐结果,文中在社交网络中使用信任传递机制,建立信任传递模型,由此获取任意用户间的信任度。另一方面,设计了相似性判定指标,凭借系统评分数据,求得用户间的偏好相似度。在得到用户间信任度和偏好相似度的基础上,根据社交网络的特性,动态结合两部分指标以获得综合推荐权重,再以此权重替代传统相似度衡量标准进行基于用户的协同过滤推荐。所提方法能在解决传统推荐算法问题的基础上进一步提升推荐效果,并以准确率、覆盖率为标准在Epinions数据集上进行验证,获得了较好的效果。 相似文献
9.
针对个性化推荐中的冷启动和用户模型主观个性特征描述不足的问题,提出一种基于用户初始特征模型优化构建的个性化推荐方法.通过对成对比较矩阵构建方法的优化和改进,减少提取主观性权重比较结果时,用户的比较操作次数,通过推导计算得出用户的初始特征模型,并据此完成推荐.通过将该方法应用到周边美食个性化推荐中,验证该方法所建立的初始... 相似文献
10.
为使用户-物品评分、社会网络和社会化标签等异构信息融合到协同过滤推荐方法的最近邻寻找过程中,弥补冷启动用户单一维度信息的不足,提出一种多重图排序的冷启动推荐方法。通过分析用户之间可能存在的信任度构建关系网络,利用多重图排序模型得到目标用户的最近邻集合,进而产生目标用户的推荐列表。实验结果表明,与基于用户的协同过滤推荐方法相比,该方法能有效地提高冷启动用户的个性化推荐准确性和推荐覆盖率。 相似文献
11.
Jitao Zhang 《计算机系统科学与工程》2019,34(4):231-236
The scale of e-commerce systems is increasing and more and more products are being offered online. However, users must find their own desired products
among a large amount of unrelated information, which makes it increasingly difficult for them to make a purchase. In order to solve this problem of
information overload, and effectively assist e-commerce users to shop easily and conveniently, an e-commerce personalized recommendation system
technology has been proposed. This paper introduces the design and implementation of a personalized product recommendation model based on user
interest. The “shopping basket analysis” functional model centered on the Apriori algorithm uses the sales data in the transaction database to mine various
interesting links between the products purchased by the customers. Moreover, it helps merchants to formulate marketing strategies, reasonably arranges
shelf-guided sales, and attracts more customers. This platform adopts a B/S structure and uses JSP+AJAX technology to achieve the dynamic loading of
pages. In the background, the Struts2 framework is combined with the SQL Server database to establish the system function module, and then the function
is gradually improved according to the requirement analysis, and the development of the platform is finally completed. 相似文献
12.
13.
推荐系统已被广泛应用于电子商务等多个领域。冷启动问题是推荐系统的一个难点。基于粒关联规则的冷启动推荐方法,运用粒来描述用户和产品,通过满足粒关联规则的4个指标,挖掘出用户和产品之间的关联规则,匹配合适的规则,最后根据这些规则向用户做出相应的推荐。在公开有效的数据集MovieLens上进行了实验,结果表明,用粒关联规则所挖掘出的规则可以有效地用于训练集和测试集上的推荐,并且具有较好的准确性。 相似文献
14.
15.
Tourist routes recommendation is a way to improve the tourist experience and the efficiency of tourism companies. Session-based methods divide all users’
interaction histories into the same number sessions with fixed time window and treat the user preference as time sequences. There have few or even no
interaction in some sessions for some users because of the high sparsity and temporal characteristics of tourist data. That lead to many session-based methods
can not be applied to routes recommendation due to aggravate the sparsity. In order to better adapt and apply the characteristics of tourism data and alleviate
the sparsity, a tourist routes recommendation method based on the user preference drifting over time is proposed. Firstly, the sparsity, temporal context,
tourist age and price characteristics of tourism data are analyzed on a real tourism data. Secondly, based on the results of analysis, tourist interaction history
is dynamic divided into different number of sessions and the tourist’s evolving profile is then constructed by mining his probabilistic topic distribution in each
session using Latent Dirichlet Allocation (LDA) and the time penalty weights. Then, the tourist feature vector based on the tourist age, the price and season
of his tourism is modeled and a set of nearest neighbors and the candidate routes is selected base on it. Finally, the routes are recommended according to
the similarities of probabilistic topic distributions between the active tourist and routes. Experimental results show that the proposed method can not only
effectively adapt to the characteristics of tourism data, but also improve the effect of recommendation. 相似文献
16.
Janusz Sobecki 《New Generation Computing》2008,26(3):277-293
In this paper web–based system user interface hybrid recommendation method based on the ant colony metaphor is presented.
We apply the ontology–based user and user interface modeling. The user model is represented as a tuple and user interface
model is represented by a set of connected nodes, what enables suitable user interface design, an interface personalization
and recommendation. The recommendation is performed using ant colony metaphor for selection the most optimal path in the user
interface graph that specifies the user interface parameters for the specified user.
相似文献
Janusz SobeckiEmail: |
17.
Contrastive Meta-learning on Heterogeneous Information Networks for Cold-start Recommendation 下载免费PDF全文
Yang Fang Zhen Tan Ziyang Chen Weidong Xiao Lingling Zhang Feng Tian 《International Journal of Software and Informatics》2023,13(4):469-488
In recommender systems, the cold-start issue is challenging due to the lack of interactions between users or items. Such an issue can be alleviated via data-level and model-level strategies. Traditional data-level methods employ auxiliary information like feature information to enhance the learning of user and item embeddings. Recently, Heterogeneous Information Networks (HINs) have been incorporated into the recommender system as they provide more fruitful auxiliary information and meaningful semantics. However, these models are unable to capture the structural and semantic information comprehensively and neglect the unlabeled information of HINs during training. Model-level methods propose to apply the meta-learning framework which naturally fits into the cold-start issue, as it learns the prior knowledge from similar tasks and adapts to new tasks quickly with few labeled samples. Therefore, we propose a contrastive meta-learning framework on HINs named CM-HIN, which addresses the cold-start issue at both data level and model level. In particular, we explore meta-path and network schema views to describe the higher-order and local structural information of HINs. Within meta-path and network schema views, contrastive learning is adopted to mine the unlabeled information of HINs and incorporate these two views. Extensive experiments on three benchmark datasets demonstrate that CM-HIN outperforms all state-of-the-art baselines in three cold-start scenarios. 相似文献
18.
在推荐系统中,冷启动推荐由于缺乏用户和物品交互信息而具有很大的挑战性.该问题可以由数据层和模型层的策略进行缓解.传统的数据层方法利用如特征信息的辅助信息来增强用户和物品表示的学习.最近,异质信息网络被整合于推荐系统中.它可以提供更丰富的辅助信息和更有意义的语义信息.但是,这些模型无法充分利用结构和语义信息,并且忽视了网络中的无标签信息.模型层的方法应用了元学习框架,该框架通过学习相似任务的先验知识然后利用很少的标签信息适应新任务,与冷启动问题相似.综上,我们提出了一个基于异质信息网络的对比元学习框架CM-HIN,同时在数据层和模型层解决冷启动问题.具体的,利用元路径和网络模式两个视图分别刻画异质信息网络的高阶以及本地结构信息.在元路径和网络模式视图中,采用对比学习挖掘异质信息网络的无标签信息并整合两个视图.在三个基准数据集上的三个冷启动推荐场景的大量实验中,CM-HIN超越了所有先进的基线模型. 相似文献
19.
传统微博用户推荐算法采用的数据来源单一,模型简单,导致推荐准确率不高。针对这一问题,本文提出一种基于标签的User Profile推荐算法,根据微博数据的特点,深入研究“微博文本”、“标签”、“社交关系”和“用户自身基本信息”等因素对微博个性化推荐的影响,通过训练LDA主题模型和SVM分类器将它们转换为标签,并赋予权重来描述用户兴趣,进行用户推荐以提高推荐准确性。实验结果表明,与传统VSM模型方法相比,该算法进行用户推荐效果更佳。 相似文献