首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intensive use of the benchmark simulation model No. 1 (BSM1), a protocol for objective comparison of the effectiveness of control strategies in biological nitrogen removal activated sludge plants, has also revealed a number of limitations. Preliminary definitions of the long-term benchmark simulation model No. 1 (BSM1_LT) and the benchmark simulation model No. 2 (BSM2) have been made to extend BSM1 for evaluation of process monitoring methods and plant-wide control strategies, respectively. Influent-related disturbances for BSM1_LT/BSM2 are to be generated with a model, and this paper provides a general overview of the modelling methods used. Typical influent dynamic phenomena generated with the BSM1_LT/BSM2 influent disturbance model, including diurnal, weekend, seasonal and holiday effects, as well as rainfall, are illustrated with simulation results. As a result of the work described in this paper, a proposed influent model/file has been released to the benchmark developers for evaluation purposes. Pending this evaluation, a final BSM1_LT/BSM2 influent disturbance model definition is foreseen. Preliminary simulations with dynamic influent data generated by the influent disturbance model indicate that default BSM1 activated sludge plant control strategies will need extensions for BSM1_LT/BSM2 to efficiently handle 1 year of influent dynamics.  相似文献   

2.
The COST/IWA benchmark simulation model has been available for seven years. Its primary purpose has been to create a platform for control strategy benchmarking of activated sludge processes. The fact that the benchmark has resulted in more than 100 publications, not only in Europe but also worldwide, demonstrates the interest in such a tool within the research community In this paper, an extension of the benchmark simulation model no 1 (BSM1) is proposed. This extension aims at facilitating control strategy development and performance evaluation at a plant-wide level and, consequently, includes both pre-treatment of wastewater as well as the processes describing sludge treatment. The motivation for the extension is the increasing interest and need to operate and control wastewater treatment systems not only at an individual process level but also on a plant-wide basis. To facilitate the changes, the evaluation period has been extended to one year. A prolonged evaluation period allows for long-term control strategies to be assessed and enables the use of control handles that cannot be evaluated in a realistic fashion in the one-week BSM1 evaluation period. In the paper, the extended plant layout is proposed and the new suggested process models are described briefly. Models for influent file design, the benchmarking procedure and the evaluation criteria are also discussed. And finally, some important remaining topics, for which consensus is required, are identified.  相似文献   

3.
The combined SHARON-Anammox process is a promising technique for nitrogen removal from wastewater streams with high ammonium concentrations. It is typically applied to sludge digestion reject water, in order to relieve the activated sludge tanks, to which this stream is typically recycled. This contribution assesses the impact of the applied control strategy in the SHARON-reactor, both on the effluent quality of the subsequent Anammox reactor as well as on the plant-wide level by means of an operating cost index. Moreover, it is investigated to which extent the usefulness of a certain control strategy depends on the reactor design (volume). A simulation study is carried out using the plant-wide Benchmark Simulation Model no. 2 (BSM2), extended with the SHARON and Anammox processes. The results reveal a discrepancy between optimizing the reject water treatment performance and minimizing plant-wide operating costs.  相似文献   

4.
5.
The main objective of this paper is to present the application of selected multivariable statistical techniques in plant-wide wastewater treatment plant (WWTP) control strategies analysis. In this study, cluster analysis (CA), principal component analysis/factor analysis (PCA/FA) and discriminant analysis (DA) are applied to the evaluation matrix data set obtained by simulation of several control strategies applied to the plant-wide IWA Benchmark Simulation Model No 2 (BSM2). These techniques allow i) to determine natural groups or clusters of control strategies with a similar behaviour, ii) to find and interpret hidden, complex and casual relation features in the data set and iii) to identify important discriminant variables within the groups found by the cluster analysis. This study illustrates the usefulness of multivariable statistical techniques for both analysis and interpretation of the complex multicriteria data sets and allows an improved use of information for effective evaluation of control strategies.  相似文献   

6.
The COST/IWA benchmark simulation model has been available for seven years. Its primary purpose has been to create a platform for control strategy benchmarking of biological wastewater treatment processes. The fact that the benchmark has resulted in more than 100 publications, not only in Europe but also worldwide, demonstrates the interest for such a tool in the research community. In this paper, an extension of the benchmark simulation model no. 1 (BSM1) is proposed. It aims at facilitating evaluation of two closely related operational tasks: long-term control strategy performance and process monitoring performance. The motivation for the extension is that these two tasks typically act on longer time scales. The extension proposed here consists of 1) prolonging the evaluation period to one year (including influent files), 2) specifying time varying process parameters and 3) including sensor and actuator failures. The prolonged evaluation period is necessary to obtain a relevant and realistic assessment of the effects of such disturbances. Also, a prolonged evaluation period allows for a number of long-term control actions/handles that cannot be evaluated in a realistic fashion in the one week BSM1 evaluation period. In the paper, models for influent file design, parameter changes and sensor failures, initialization procedure and evaluation criteria are discussed. Important remaining topics, for which consensus is required, are identified. The potential of a long-term benchmark is illustrated with an example of process monitoring algorithm benchmarking.  相似文献   

7.
In wastewater treatment plants (WWTPs) equipped with sludge digestion and dewatering systems, the reject water originating from these facilities contributes significantly to the nitrogen load of the activated sludge tanks, to which it is typically recycled. In this paper, the impact of reject water streams on the performance of a WWTP is assessed in a simulation study, using the Benchmark Simulation Model no. 2 (BSM2), that includes the processes describing sludge treatment and in this way allows for plant-wide evaluation. Comparison of performance of a WWTP without reject water with a WWTP where reject water is recycled to the primary clarifier, i.e. the BSM2 plant, shows that the ammonium load of the influent to the primary clarifier is 28% higher in the case of reject water recycling. This results in violation of the effluent total nitrogen limit. In order to relieve the main wastewater treatment plant, reject water treatment with a combined SHARON-Anammox process seems a promising option. The simulation results indicate that significant improvements of the effluent quality of the main wastewater treatment plant can be realized. An economic evaluation of the different scenarios is performed using an Operating Cost Index (OCI).  相似文献   

8.
In this paper, a new methodology for integrated modelling of the WWTP has been used for the construction of the Benchmark Simulation Model N degrees 2 (BSM2). The transformations-approach proposed in this methodology does not require the development of specific transformers to interface unit process models and allows the construction of tailored models for a particular WWTP guaranteeing the mass and charge continuity for the whole model. The BSM2 PWM constructed as case study, is evaluated by means of simulations under different scenarios and its validity in reproducing water and sludge lines in WWTP is demonstrated. Furthermore the advantages that this methodology presents compared to other approaches for integrated modelling are verified in terms of flexibility and coherence.  相似文献   

9.
The IWA Anaerobic Digestion Model No.1 (ADM1) was presented in 2002 and is expected to represent the state-of-the-art model within this field in the future. Due to its complexity the implementation of the model is not a simple task and several computational aspects need to be considered, in particular if the ADM1 is to be included in dynamic simulations of plant-wide or even integrated systems. In this paper, the experiences gained from a Matlab/Simulink implementation of ADM1 into the extended COST/IWA Benchmark Simulation Model (BSM2) are presented. Aspects related to system stiffness, model interfacing with the ASM family, mass balances, acid-base equilibrium and algebraic solvers for pH and other troublesome state variables, numerical solvers and simulation time are discussed. The main conclusion is that if implemented properly, the ADM1 will also produce high-quality results in dynamic plant-wide simulations including noise, discrete sub-systems, etc. without imposing any major restrictions due to extensive computational efforts.  相似文献   

10.
An intelligent control system for wastewater treatment processes has been developed and applied to full-scale, high-rate, activated sludge process control. In this control system, multiple software agents that model the target system using their own modeling method collaborate by using data stored in an abstracted database named ‘blackboard’. The software agents, which are called ‘expert modules’, include a fuzzy expert system, a fuzzy controller, a theoretical activated sludge model, and evaluators of raw data acquired by various online sensors including a respirometer. In this paper, the difficulties of controlling an activated sludge system by using a single conventional strategy are briefly reviewed, then our approach to overcome these difficulties by using multiple modeling methods in the framework of an ‘intelligent control system’ is proposed. Case studies of applications to a high-rate activated sludge process that treats BOD and nitrogen of human excrement are also presented.  相似文献   

11.
The combined SHARON-Anammox process for treating wastewater streams with high ammonia concentration is discussed. Partial nitritation in the SHARON reactor should be performed to such an extent that an Anammox-optimal nitrite:ammonium ratio is generated. The SHARON process is typically applied to sludge digestion rejection water in order to relieve the ammonium load recycled to the main plant. A simulation study for realistic influent conditions on a SHARON reactor with a fixed volume and operated with constant air flow rate reveals that the actual nitrite:ammonium ratio might deviate significantly from the ideal ratio and might endanger operation of the subsequent Anammox reactor. It is further examined how the nitrite:ammonium ratio might be optimized. A cascade pH control strategy and a cascade O2 control strategy are tested. Simulation results are presented and the performance of the different strategies is assessed and quantified in an economic way by means of an operating cost index. Best results are obtained by means of cascade feedback control of the SHARON effluent nitrite:ammonium ratio through setting an O2-set-point that is tracked by adjusting the air flow rate.  相似文献   

12.
Two strategies for control of nitrogen removal in an alternating activated sludge plant are compared. One is based on simple model predictions determining the cycle length at the beginning of each cycle. The other is based on simple rules relating present ammonia and nitrate concentrations. Both strategies are close in efficiency measured as effluent total (inorganic) nitrogen and both perform better than using fixed phase lengths for a test scenario describing a typical dry weather diurnal variation. After modifying the criterion functions of the rule based strategy the two strategies are found to produce equivalent controls, which means that the optimal criteria of the model based strategy can be fulfilled without the need for model predictions.  相似文献   

13.
Many respirometry-based control strategies have been proposed in the literature but few successful practical implementations or even simulation-based evaluations have been reported. The state-of-the-art provides insufficient justification for the development of a how-to-do procedure for such control strategies in full scale. It is, therefore, expected that carefully conducted simulation studies will greatly support the evaluation of proposed strategies and, eventually, the implementation in practice. These studies should be based on a rigorous methodology including simulation model, plant layout, controller and test procedure. This paper describes the development of such a methodology, termed “benchmark”. The benchmark is evaluated on the basis of a respirometry-based control strategy from the literature. Some simulation results are shown and modifications to the strategy imperative to the implementation in the benchmark are discussed. It is concluded that the benchmark provides a convenient means to perform a number of tests with the implemented control strategy. The benchmark should be further developed and tested.  相似文献   

14.
The enhanced biological phosphorus removal (EBPR) process is based on enriching the sludge with polyphosphate accumulating organisms (PAO) which are scarce in conventional non-EBPR wastewater treatment plant sludge. Hence, the start-up of EBPR systems (i.e. enriching the sludge with PAO) can be very slow and complex. A simulation study of a possible improvement of the start-up of an EBPR system in a sequencing batch reactor is presented in this work. The improvement is based on reducing the length of the aerobic phase so that it coincides with the depletion of orthophosphate from the medium. This improvement, though verified by simulation to be very successful, requires a good on-line orthophosphate sensor. To avoid this technical limitation, a link between oxygen uptake rate (OUR) measurements and orthophosphate presence is proposed. This link allows the control of the aerobic phase length with OUR as a measured variable and, consequently, a considerable improvement with respect to the conventional fixed aerobic phase length operation. An improvement of 95% in the ratio of PAO to heterotrophs and an increase of 30% in the final amount of PAO in sludge is achieved with this control strategy. The kinetic mod for simulations was a modification of the Activated Sludge Model 2d.  相似文献   

15.
混合液污泥浓度与污泥回流系统控制策略研究   总被引:1,自引:0,他引:1  
生物反应池中的混合液污泥浓度(MISS)是活性污泥系统重要的设计与运行参数.在城市污水处理厂日常运行中,应根据运行条件的变化,如进水水质水量的波动、污泥沉降性能的改变等,实施一定的污泥回流控制策略,以保证生物反应池中合理的活性污泥数量,促进系统的稳定高效运行.  相似文献   

16.
In this paper the development of an extension module to the IWA/COST simulation benchmark to include expert reasoning is presented. This module enables the detection of suitable conditions for the development of settling problems of biological origin (filamentous bulking, foaming and rising sludge) when applying activated sludge control strategies to the simulation benchmark. Firstly, a flow diagram is proposed for each settling problem, and secondly, the outcome of its application is shown. Results of the benchmark for two evaluated control strategies illustrate that, once applied to the simulation outputs, this module provides supplementary criteria for plant performance assessment. Therefore, simulated control strategies can be evaluated in a more realistic framework, and results can be recognised as more realistic and satisfactory from the point of view of operators and real facilities.  相似文献   

17.
Decision support systems (DSS) have generated high expectations as a tool to support activated sludge operation because of their ability to represent heuristic reasoning and to handle large amounts of qualitative, uncertain and low-accuracy data. Previous applications have been satisfactory to control simple problems, when static reasoning and literature-based solutions were enough. However to face complex operational problems with biological origin and slow dynamics (e.g. solids separation problems), it is necessary to use dynamic reasoning and apply long-term control strategies, monitoring the evolution of the process and adjusting the action plan according to the feed back of the process. This paper presents a dynamic reasoning DSS to face solids separation problems in the activated sludge system. The DSS is capable of identifying the complex problem affecting the process, determining if the current situation is new or a continuation from the previous one, assessing what is the specific cause of the situation, and recommending a long-term control strategy, which is daily adjusted according to the evolution of the process.  相似文献   

18.
The excess biomass produced during biological treatment of municipal wastewater represents a major issue worldwide, as its disposal implies environmental, economic and social impacts. Therefore, there has been a growing interest in developing technologies to reduce sludge production. The main proposed strategies can be categorized according to the place inside the wastewater treatment plant (WWTP) where the reduction takes place. In particular, sludge minimization can be achieved in the wastewater line as well as in the sludge line. This paper presents the results of two pilot scale systems, to evaluate their feasibility for sludge reduction and to understand their effect on biomass activity: (1) a pilot plant with an ozone contactor in the return activated sludge (RAS) stream for the exposition of sludge to a low ozone dosage; and (2) an oxic-settling-anaerobic (OSA) process with high retention time in the anaerobic sludge holding tank have been studied. The results showed that both technologies enabled significant excess sludge reduction but produced a slight decrease of biomass respiratory activity.  相似文献   

19.
The activated sludge process can be modelled by ordinary and partial differential equations for the biological reactors and secondary settlers, respectively. Because of the complexity of such a system, simulation models are most often used to investigate them. However, simulation models cannot give general rules on how to control a complex nonlinear process. For a reduced-order model with only two components, soluble substrate and particulate biomass, general results on steady-state solutions have recently been obtained, such as existence, uniqueness and stability of solutions. The aim of the present paper is to utilize those results to formulate some implications of practical importance. In particular, strategies are described for the manual control of the effluent substrate concentration subject to the constraint that the settler is maintained in normal operation (with a sludge blanket in the thickening zone) in steady state. Such strategies contain how the two control parameters, the recycle and waste volumetric flow ratios, should be chosen for any (steady-state) values of the input variables.  相似文献   

20.
Ten years of full-scale experience with enhanced biological phosphorus removal (EBPR) has been evaluated. During the start-up period lack of carbon source was the main operational problem and a higher level of volatile fatty acids was secured by introducing a primary sludge hydrolysis. Acidic thermal sludge hydrolysis was used as the sludge treatment method at the plant during about three years. One effluent stream, rich in carbon and precipitant, was brought back to the process leading to an improvement of the phosphorus removal both by an improved biological process and chemical precipitation. A quite stable process of EBPR was developed with low levels of effluent phosphorus concentration. Stringent effluent discharge limits during short evaluation periods necessitated a continued work for improvement of the short-term stability. During periods with lack of carbon, such as industrial holiday or rainy periods, both simultaneous precipitation and reduced aeration have been successfully tested as strategies for securing low levels of effluent phosphorus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号