首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Field trials were conducted during the 1980–82 seasons to study the response dryland sorghum to nitrogen and phosphorus fertilization in a ferruginous tropical soil. Treatments tested were factorial combinations of three rates of nitrogen (0, 60 and 120 kg N ha–1) and four rates of phosphorus (0, 11, 22 and 33 kg P ha–1). Grain and straw yields and yield components were enhanced by nitrogen fertilization in two out of three years. The optimum N rate for grain yield was 60 kg N ha–1 while straw yield responded up to 120 kg N ha–1. The optimum P rate for dryland sorghum was 11 kg P ha–1. Both N and P enhanced grain weight per head, grain number, test weight and tillering significantly but it was only N which enhanced 1000-grain weight and flag leaf area. Dry matter productin was increased by N fertilization but not by P. There were no significant N × P interactions for any of the parameters studied. Dryland sorghum response to N and P fertilization was influenced by season, time of planting and rainfall distribution.  相似文献   

2.
A strain ofPenicillium bilaji Chalabuda (PB) has recently been commercially released as a seed inoculant to increase phosphorus (P) uptake by wheat (Triticum aestivum L.). The purpose of this study was to compare the effects of drill applied P (15 kg P ha–1) with PB seed inoculation on early growth, development, P uptake, and grain yield of Stoa spring wheat at four sites in North Dakota.Fertilization with P consistently enhanced early season growth, main stem development, tillering and P uptake. Seed inoculation with PB had little or no effect on these traits. Phosphorus fertilization tended to increase common root rot severity (CRR, incited byCochliobolus sativus (Ito & Kurib) Drechs.), while PB inoculation had no effect. Grain yields were significantly increased by P fertilization at one location. Inoculation with PB also increased grain yield at this location. The reason why PB inoculation increased yield at this location is not evident, as plant growth and P uptake were not enhanced earlier in the season. Averaged across all four sites, PB inoculation increased wheat yields 66 kg ha–1, which is similar to averaged yield responses reported from the Prairie Provinces of Canada.  相似文献   

3.
Experiments were conducted in a glasshouse to determine the effects of the mineral N supplied as ammonium nitrate andBradyrhizobium inoculation on the growth and iron nutrition of nodulating and non-nodulating groundnut (Arachis hypogaea L.) lines. In a sterilized sand-vermiculite medium supplied with N-free nutrient solution (pH 7.0), inoculation of nodulating groundnut withBradyrhizobium strain NC 43.3 enhanced dry matter production and O-phenanthroline extractable iron and N contents of the plants. The supply of mineral N at a rate of 100 mg N L–1 (as NH4NO3) through deionized water (pH 8.5) induced iron chlorosis symptoms in the nodulating groundnuts grown in Vertisols, but these symptoms were not observed at higher N levels (200–400 mg N L–1). The induced chlorosis was only partially corrected by inoculation withBradyrhizobium strains NC 92 and NC 43.3. The iron deficiency chlorosis was, however, corrected by application of higher rates of ammonium nitrate.Submitted as JA No. 942 of the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)  相似文献   

4.
Nitrogen demand from soybean seeds during seed filling is very high and has been proposed as the cause of nitrogen remobilization and leaf senescence. Previous research has not shown consistent effects of late season fertilization on seed yield, while its effects on leaf senescence have not been evaluated. Two field experiments were performed to determine the effects of a late season N fertilization on leaf senescence and fall, seed yield and its components, and residual soil nitrate, and to evaluate the potential risk of groundwater contamination. Two rates of nitrogen (50 and 100 kg N ha–1) were applied at the R3 and R5 development stages. Nitrogen fertilization, either at R3 or R5, increased soil nitrate availability during the seed-filling period. Seed yield, seed number and protein content were not affected by N fertilization. The addition of 100 kg N ha–1 produced a small delay of 1–2 days in the leaf fall, and slightly increased seed size (3.6%). Our results suggest that increasing soil N availability during the seed-filling period is not an effective way to delay leaf senescence or to increase seed growth and yield of soybean. Nitrogen fertilization increased the level of residual nitrate in the top soil at one site (the one with lowest seed yield), increasing the risk of nitrate leaching during subsequent fallow.  相似文献   

5.
Nitrogen fixation (N2) by leguminous crops is a relatively low-cost alternative to N fertilizers for smallholder farmers in Africa. Nitrogen fixation in pea (Pisum sativum L. cv. Markos) as affected by phosphorus (P) fertilization (0, 30 kg P ha−1) and inoculation (uninoculated and inoculated) in the semiarid conditions of Northern Ethiopia was studied using the 15N isotope dilution method and locally adapted barley (Hordeum vulgare L. cv. Bureguda) as reference crop. The effect of pea fixed nitrogen (N2) on yield of the subsequent wheat crop (Triticum aestivum L.) was also assessed. Phosphorus and inoculation significantly influenced nodulation at the late flowering stage and also significantly increased P and N concentrations in shoots, and P concentration in roots, while P and N concentrations in nodules were not affected. Biomass, pods m−2 and grain yield responded positively to P and inoculation, while seeds pod−1 and seed weights were not significantly affected by these treatments. Phosphorus and inoculation enhanced the percentage of N derived from the atmosphere in the whole plant ranging from 53 to 70%, corresponding to the total amount of N2 fixed varying from 55 to 141 kg N ha−1. Soil N balance after pea ranged from − 9.2 to 19.3 kg N ha−1 relative to following barley, where barley extracted N on the average of 6.9 and 62.0 kg N ha−1 derived from fertilizer and soil, respectively. Beneficial effects of pea fixed N2 on yield of the following cereal crop were obtained, increasing the average grain and N yields of this crop by 1.06 Mg ha−1 and 33 kg ha−1, respectively, relative to the barley–wheat monocrop rotation. It can be concluded that pea can be grown as an alternative crop to fallow, benefiting farmers economically and increasing the soil fertility.  相似文献   

6.
Growth and yield components in field-grown maize (Zea mays L.) were enhanced by nitrogen fertilization ranging from 50 to 200 kg N ha–1. Ear diameter, kernel depth, grain: stover ratio, number of ears plant–1, plant height and dry matter production increased as N fertilization rate was increased up to 100 or 150 kg N ha–1. Tasselling in maize was hastened by N fertilization. Increasing plant density from 25000 to 75000 plants ha–1 increased plant height, dry matter production and delayed tasseling but reduced ear diameter, kernel depth, grain: stover ratio and number of ears plant–1. Increased N supply and plant density had no influence on the concentrations of Mn, Zn, Cu, and Fe in ear leaf; except that Mn concentration increased as N fertilization rate was increased up to 150 kg N ha–1. Nitrogen × plant density interactions on the concentrations of the micronutrients in maize ear leaf were not significant.  相似文献   

7.
Effects of rate and time of nitrogen fertilization on growth, yield and yield components of upland cotton (Gossypium hirsutum L) were studied in two years (1975–76). Four rates of nitrogen application (0, 26, 52 and 78 kg ha–1) timed at 3 or 8 weeks after sowing were compared. Seed cotton yield components increased significantly with increased N application at least up to 52 kg N ha–1, with yield increases between 49% and 73%. Seed cotton yield was influenced by treatments mainly through boll number. Both crop growth rate and fruiting were enhanced by nitrogen fertilization. Applying N at 8 weeks (flowering) favoured yield only slightly over that at 3 weeks (thinning), but improved crop growth and fruiting by about 64% and 24%, respectively. There were significant N rate × time interactions in favour of fertilization at flowering. Applying 52 kg N ha–1 at 8 weeks seems best for cotton in the Nigerian savannah.  相似文献   

8.
Brazil has approximately 30 million hectares of lowland areas, known locally as Varzea, but very little is known about their fertility and crop production potential. A field experiment was conducted for three consecutive years to evaluate response of lowland rice (Oryza sativa L.) grown in rotation with common bean (Phaseolus vulgaris L.) on a Varzea (low, Humic Gley) soil. Rice was grown at low (no fertilizer), medium (100 kg N ha–1, 44 kg P ha–1, 50 kg K ha–1, 40 kg FTE-BR 12 ha–1), and high (200 kg N ha–1, 88 kg P ha–1, 100 kg K ha–1, 80 kg FTE-BR 12 ha–1 fritted trace element-Brazil 12 as a source of micronutrients) soil fertility levels. Green manure with medium fertility was also included as an additional treatment. Average dry matter and grain yields of rice and common bean were significantly (P < 0.01) increased with increasing fertilization. Across the three years, rice yield was 4327 kg ha–1 at low fertility, 5523 kg ha–1 at medium fertility, 5465 kg ha–1 at high fertility, and 6332 kg ha–1 at medium fertility with green manure treatment. Similarly, average common bean yield was 294 kg ha–1 at low soil fertility, 663 kg ha–1 at medium soil fertility, 851 kg ha–1 at high fertility, and 823 kg ha–1 at medium fertility with green manure treatment. Significant differences in nutrient uptake in bean were observed for fertility, year, and their interactions; however, these factors were invariably nonsignificant in rice.  相似文献   

9.
The relationship between dry matter (DM) herbage yield and the level of superphosphate applied to the soil (soil P) was measured for swards of annual pasture legumes in four glasshouse and two field experiments. A single cultivar of one species was used in each experiment. The swards were either uncut, or cut at weekly intervals to a height of 1.5 to 3 cm from the soil surface from about one month after sowing. The sown seeds of each species were of the same size but contained different P concentrations (seed P).For the glasshouse experiments, defoliation reduced DM herbage yields of the species (Trifolium subterraneum, T. balansae, Medicago polymorpha andOrnithopus compressus) by between 20 to 50% two months after sowing, and by 50 to 75% three months after sowing. Higher seed P increased DM herbage yields two months after sowing by about 25% for the lowest soil P level and by 15% for the highest soil P level. Three months after sowing the values were 12 and 8%.In one field experiment, compared with uncut swards, the DM herbage yields for the weekly cut swards ofT. subterraneum were reduced by up to about 5% for the lowest soil P, compared with up to 25% for the highest soil P. Corresponding reductions forM. polymorpha swards in the other field experiment were about 15 and 20%. For the weekly cut swards, high seed P produced large increases in the cumulative DM yields of the weekly cut herbage. Increases for low soil P were about 300% at 2.5 months after sowing and 30% at 4.5 months after sowing. Corresponding values for high soil P were 100 and 20%. However, higher seed P produced only small (zero to 15%) increases in total DM yield of uncut and weekly cut swards (for the weekly cut swards, total DM yield was the cumulative yields of the weekly cut herbage plus the DM yield of the plant residues that were below the cutting height of the mower). Compared with uncut swards, seed production, measured forM. polymorpha only, was reduced by 40% when the swards were regularly cut. Higher seed P increased seed production of uncut swards by 40% for the lowest soil P level and by 25% for the highest soil P level. Corresponding values for the weekly cut swards were 30 and 20%.  相似文献   

10.
Not much is known about the response of lowland rice to K fertilization under Brazilian conditions. A field experiment was conducted during four consecutive years to determine the response of three lowland rice (Oryza sativa L.) cultivars to K fertilization on a Low Humic Gley soil. In the first two years, K was broadcast at rates of 0, 42, 84, 126, and 168 kg K ha–1. In the last two years K rates were reduced to 0, 25, 50, 75, and 100 kg K ha–1 and applied in a band. Potassium significantly (P < 0.01) increased grain yields but the response varied from cultivar to cultivar and year to year. Yield responses to K fertilization were superimposed on a general trend of increasing grain yields across the four growing seasons. Mean grain yields increased 14.3% with broadcast application of K in the first two years and 10.4% with banded application of K in the last two years when compared to the control treatments. Extractable soil K increased with K application rate and decreased with soil depth. Potassium was rapidly removed from the soil and yearly broadcast or banded application of K can be expected to result in a significant increase in grain yield of lowland rice in these soils.  相似文献   

11.
Field experiments were conducted during 1988–1989 at two adjacent sites on an acid sulfate soil (Sulfic Tropaquept) in Thailand to determine the influence of urea fertilization practices on lowland rice yield and N use efficiency. Almost all the unhydrolyzed urea completely disappeared from the floodwater within 8 to 10 d following urea application. A maximum partial pressure of ammonia (pNH3) value of 0.14 Pa and an elevation in floodwater pH to about 7.5 following urea application suggest that appreciable loss of NH3 could occur from this soil if wind speeds were favorable. Grain yields and N uptake were significantly increased with applied N over the control and affected by urea fertilization practices (4.7–5.7 Mg ha–1 in dry season and 3.0–4.1 Mg ha–1 in wet season). In terms of both grain yield and N uptake, incorporation treatments of urea as well as urea broadcasting onto drained soil followed by flooding 2 d later were more effective than the treatments in which the same fertilizer was broadcast directly into the floodwater either shortly or 10 d after transplanting (DT). The15N balance studies conducted in the wet season showed that N losses could be reduced to 31% of applied N by broadcasting of urea onto drained soil and flooding 2 d later compared with 52% loss by broadcasting of urea into floodwater at 10 DT. Gaseous N loss via NH3 volatilization was probably responsible for the poor efficiency of broadcast urea in this study.  相似文献   

12.
The effect of water supply on the response of subterranean clover (Trifolium subterraneum), annual medic (Medicago polymorpha) and wheat (Triticum aestivum) to levels of phosphorus (P) applied to the soil (soil P) was studied in four glasshouse experiments. P was applied as powdered superphosphate. In one experiment, the effect on plant yield of P concentration in the sown seed (seed P) was also studied. There were two water treatments: the soil was returned to field capacity, by watering to weight, either daily (adequate water, W1) or weekly (water stress, W2). In three experiments: (i) P concentration or content (P concentration × yield) in plant tissue was related to plant yield, and (ii) soil samples were collected before sowing to measure bicarbonate-extractable P (soil test P) which was related to subsequent plant yields.Compared with W1, water stress consistently reduced yields of dried tops and the maximum yield plateau for the relationship between yield and the level of P applied, by up to 25 to 60% in both cases. Compared with W1, the effectiveness of superphosphate for producing dried tops decreased for W2 by 11 to 45%, for both freshly-applied and incubated superphosphate. Consequently in the field, water supply, which varies with seasonal conditions, may effect plant yield responses to freshly — and previously — applied P fertilizer.Seed P increased yields, for W1, by 40% for low soil P and 20% for high soil P; corresponding values for W2 were 20 and 12%. Consequently proportional increases due to seed P were smaller for the water-stressed treatment.The relationship between yield and P concentration or content (internal efficiency of P use) differed for W1 and W2, so that the same P concentration or content in tissue was related to different yields. Estimating the P status of plants from tissue P values evidently depends on water supply, which in the field, differs in different years depending on seasonal conditions.The relationship between yield and soil test P differed for W1 and W2. Predicting yields from soil test P can only provide a guide, because plant yields depend on both P and water supply, which in the field may vary depending on seasonal conditions.  相似文献   

13.
In the 1994 and 1995 cropping seasons, fluted pumpkin(Telfairia occidentalis Hook. F) was intercropped withbanana (Musa AAA) or grown alone. The flutedpumpkin, whether intercropped or grown alone, received 30 to 120 kgNha–1 in the first cropping season and 80 to320kg N ha–1 in the following season. Fluted pumpkinplants grown alone or which did not receive N served as controls. The objectiveof the study was to determine the N requirement of fluted pumpkin when grownalone or as an intercrop. Intercropping significantly decreased vine yield andnumber of fruits set in the 1994 cropping season, but it did not significantlyinfluence number of fruits set in the 1995 cropping season. In both croppingseasons, intercropping had no significant effect on fruit yield. In the 1994cropping season, linear trends were significant for the response of vine yieldto N fertilization. In the 1995 cropping season, quadratic trends weresignificant for the response of fruit set and fruit yield to N fertilization.There was no interaction between cropping systems and N fertilization. Based oncash advantage due to fertilizer application values, 160 kg Nha–1 was considered optimal for dual purpose (vegetable+ seed) production of fluted pumpkin.  相似文献   

14.
Field trials were conducted at Samaru, Nigeria to investigate the growth, yield and grain quality response of three grain sorghum (Sorghum bicolor L. Moench) varieties (L. 187, SK 5912 and FFBL) to N fertilization under varying plant densities (33300, 50000 or 66600 plants ha–1). Year × N interactions were significant for yield components and so were variety × N and variety × plant density interactions. Grain yield increased 41, 42, and 126% with application of 60 kg N ha–1, the optimum N rate, a response which was associated with variations in grain weight per panicle, panicle weight and grain number. Varieties SK 5912 and FFBL produced more straw in response to added N than did var. L. 187 while yield components in var. SK 5912 and L.187 responded better than those in var. FFBL. Yield components declined in var. SK 5912 and L. 187 as plant density was increased to either 50000 or 66600 plants ha–1. Grain crude protein (CP) content and protein yield were increased 8 and 52% respectively by 60 kg N ha–1 but CP content declined as plant density was increased. Grain tannin content was virtually unaffected by increasing N supply. Optimum plant density for grain sorghum production in this environment is in the range of 50000 plants ha–1.  相似文献   

15.
Phosphorus (P) deficiency is one of the major limiting factor for crop production in highly weathered soils in the humid tropics. Field experiments were conducted for two years (1992 and 1993) to determine P response and efficiencies of upland rice cultivars in an Ultisol, low in available P, in the forest zone of Cote d'Ivoire. The rice cultivars tested were selected from a large number of entries tested earlier for acidity tolerance.Grain yields of the cultivars were significantly increased by P application. There was little further response in grain yield at higher rates than 60 kg P ha–1. The rice cultivars differed in agronomic and physiological P efficiencies and the efficiencies were higher at lower rates of P. The rooting depths of the cultivars were increased by application of P at the lowest application rate (30 kg P ha–1).The results suggest that P fertilization of soil acidity-tolerant upland rice cultivars can significantly improve the productivity of the Ultisols.  相似文献   

16.
Legume–maize rotation and maize nitrogen (N)-response trials were carried out simultaneously from 1998 to 2004 in two distinct agro-ecological environments of West Africa: the humid derived savannah (Ibadan) and the drier northern Guinea savannah (Zaria). In the N-response trial, maize was grown annually receiving urea N at 0, 30, 60, 90 and 120 kg N ha−1. In Ibadan, maize production increased with N fertilization, but mean annual grain yield declined over the course of the trial. In Zaria, no response to N treatments was observed initially, and an increase in the phosphorus (P) and sulphur (S) fertilizer application rate was required to increase yield across treatments and obtain a response to N applications, stressing the importance of non-N fertilizers in the savannah. In the rotation trial, a 2-year natural fallow–maize rotation was compared with maize rotated with different legume types: green manure, forage, dual-purpose, and grain legumes. The cultivation of some legume types resulted in a greater annual maize production relative to the fallow–maize combination and corresponding treatments in the N-response trial, while there was no gain in maize yield with other legume types. Large differences in the residual effects from legumes and fallow were also observed between sites, indicting a need for site-specific land management recommendations. In Ibadan, cultivation of maize after the forage legume (Stylosanthes guianensis) achieved the highest yield. The natural fallow–maize rotation had improved soil characteristics (Bray-I P, exchangeable potassium, calcium and magnesium) at the end of the trial relative to legume–maize rotations, and natural fallow resulted in higher maize yields than the green manure legume (Pueraria phaseoloides). In Zaria, maize following dual-purpose soybean achieved the highest mean yield. At both sites, variation in aboveground N and P dynamics of the legume and fallow vegetation could only partly explain the different residual effects on maize.  相似文献   

17.
The effect of phosphorus (P) fertilization on dry matter production and nitrogen (N) uptake of groundnut (Arachis hypogaea L.) was studied during the growing seasons of 1989, 1990 and 1991 under rainfed conditions on an acid sandy soil in Niger, West Africa. Annual application of 16 kg P ha–1 as single superphosphate (SSP) failed to increase the total dry matter production significantly in all three years.Fertilization with SSP increased the concentrations of P and sulfur (S) in shoots from deficiency to sufficiency levels. It decreased the already very low concentrations of molybdenum (Mo), especially in the nodules, and also the N concentration in the shoot dry matter.With SSP application, total N uptake declined over three years. Foliar application of P and soil application of triple superphosphate (TSP) enhanced dry matter production, N and Mo uptake.Although these acid sandy soils are known to be deficient in P and S, care must be taken in using SSP in groundnuts as it may induce Mo deficiency, unless supplementary Mo is applied.ICRISAT Journal Article No. 1230  相似文献   

18.
Application of higher levels (60 and 90 kg N ha–1) of nitrogen fertilizer (Urea) inhibited the growth ofAzolla pinnata (Bangkok) and blue-green algae (BGA) though the reduction was more in BGA thanAzolla. Inoculation of 500 kg ha–1 of freshAzolla 10 days after transplanting (DAT) in the rice fields receiving 30, 60 and 90 kg N ha–1 as urea produced an average of 16.5, 15.0 and 13.0 t ha–1 fresh biomass ofAzolla at 30 DAT, which contained 31, 31 and 27 kg N ha–1, respectively. The dry mixture of BGA (60%Aulosira, 35%Gloeotrichia and 5% other BGA on fresh weight basis) inoculated in rice field 3 DAT at a rate of 10 kg ha–1 showed a mat formation at 80 DAT with an average fresh biomass of 8.0, 5.8 and 4.2 t ha–1 containing 22, 17 and 12 kg N ha–1, respectively with those N fertilizer doses.Application ofAzolla showed positive responses to rice crop by increasing the panicle number and weight, grain and straw yields and nitrogen uptake in rice significantly at all the levels of chemical nitrogen. But, the BGA inoculation had a significant effect on the grain and straw yields only during the dry season in the treatment where 30 kg N was applied. During the wet season and in the other treatments performed during the dry season no significant increase in yields, yield components and N uptake were observed with BGA.The intercropping ofAzolla and rice in combination with 30, 60 and 90 kg N ha–1 as urea showed the yields, yield attributes and nitrogen uptake in rice at par with those obtained by applying 60, 90 and 120 kg N ha–1 as urea, respectively but, the BGA did not. The analysis of soil from rice field after harvest showed thatAzolla and BGA intercropping with rice in combination with chemical fertilizer significantly increased the organic carbon, available phosphorus and total nitrogen of soil.  相似文献   

19.
Even though K is an essential nutrient, the response of upland rice to K fertilization under field conditions has not been adequately documented. This research was conducted to examine the influence of K fertilization on yield of upland rice (Oryza sativa L.). In the first three years, K was broadcast at rates of 0, 42, 84, 126 and 168 kg K ha–1. In the last two years K was banded at rates of 0, 25, 50, 75 and 100 kg K ha–1. The experiment was conducted on an Oxisol (Typic Haplustox) during five consecutive years. Potassium significantly increased grain yields and dry matter production but response varied from cultivar to cultivar and year to year. Drought and panicle neck blast played an important role in limiting upland rice yield response to K fertilization. Potassium application rates associated with maximum grain yield varied from 83 to 127 kg K ha–1 when K was broadcast and from 47 to 67 kg K ha–1 when K was banded. Previous broadcast K, favorable weather and blast resistant cultivars probably contributed to higher yields with K banding in the fourth and fifth growing seasons.  相似文献   

20.
Fertigation versus broadcasting in an orange grove   总被引:4,自引:0,他引:4  
A long-term experiment was carried out in a mature orange grove comparing broadcasting versus continuous application of nitrogen at three rates (80, 160, 280 kg ha–1), 22 kg P ha–1 and 126 kg K ha–1 annually. The trees were irrigated with minispriklers wetting 70% of the soil area.The level of NO3-N in the leaves varied according to the rate of N application. Leaf K and P content were not affected by fertilization. High N applications caused excess N in the soil solution. The rate of N application did not affect orange yield, fruit size or quality. Fertigation at 160 kg N ha–1 caused higher yields than when the same amount of fertilizer was broadcast. At the high application rate, no differences between modes of application were found.This study was initiated by A. Bar-Akiva, who died suddenly early in 1986. Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No 2104-E, 1987 series.(deceased)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号