首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
制备了以聚对苯二甲酸乙二醇酯(PET)为支撑层,白炭黑填充的聚二甲基硅氧烷(PDMS)为皮层的硅橡胶复合膜,研究了纳米白炭黑在铸膜液中分散性能的影响因素。结果发现,体系中加入适量正硅酸乙酯有助于提高纳米白炭黑的分散性;正庚烷与硅橡胶的配比为10:1(质量比,下同)时,白炭黑的分散速度最快。并测试了5 %(质量分数,下同)白炭黑填充硅橡胶复合膜的拉伸强度,结果表明,其拉伸强度可达1.828 MPa,相当于未填充白炭黑的硅橡胶膜(0.368 MPa)的5倍。  相似文献   

2.
疏水白炭黑填充PDMS-PA复合膜的渗透汽化性能   总被引:3,自引:1,他引:3  
在聚二甲基硅氧烷(PDMS)层中引入疏水性气相法白炭黑,制成填充的硅橡胶-聚酰胺(PDMS-PA)多层复合膜;通过扫描电镜(SEM)观察了填充复合膜的截面形态,并考察了填充复合膜的渗透蒸发性能。结果发现,以PDMS层的质量为基准,填充少量的疏水性气相法白炭黑就能显著影响复合膜的渗透性能;填充复合膜的渗透通量随着白炭黑用量的增加而增加,而选择性则没有显著降低。在40℃、乙醇质量分数为5%的乙醇水溶液中,白炭黑质量分数为20%的PDMS-PA复合膜的渗透通量达到2 400 g/m2.h,比非填充复合膜的渗透通量高1倍多;而分离因子为7,稍低于非填充复合膜的8.5。此外,填充复合膜和非填充复合膜的分离性能对温度和浓度变化的依赖关系一致。  相似文献   

3.
《应用化工》2022,(1):89-92
由ZSM-5沸石和聚二甲基硅氧烷(PDMS)制备超薄沸石填充PDMS复合膜,考察沸石填充量、沸石结构中硅铝比和操作温度对沸石填充硅橡胶膜渗透汽化性能的影响。结果表明,超薄复合膜的制备可以改善渗透通量小的缺陷。沸石填充量30%时分离因子最大;具有相同填充量的PDMS膜,硅铝比较大的填充膜,其分离因子和渗透通量均较高;随着操作温度的升高,复合膜分离因子先升高后降低,在50℃达到最大值,其渗透通量呈升高趋势。  相似文献   

4.
由ZSM-5沸石和聚二甲基硅氧烷(PDMS)制备超薄沸石填充PDMS复合膜,考察沸石填充量、沸石结构中硅铝比和操作温度对沸石填充硅橡胶膜渗透汽化性能的影响。结果表明,超薄复合膜的制备可以改善渗透通量小的缺陷。沸石填充量30%时分离因子最大;具有相同填充量的PDMS膜,硅铝比较大的填充膜,其分离因子和渗透通量均较高;随着操作温度的升高,复合膜分离因子先升高后降低,在50℃达到最大值,其渗透通量呈升高趋势。  相似文献   

5.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)与自制多乙烯基硅油为原料制得低聚物处理剂,并将其与白炭黑结合制得阻尼改性白炭黑。研究了阻尼改性白炭黑对低苯基硅橡胶、甲基乙烯基硅橡胶阻尼性能的改善效果和对力学性能的影响。结果表明,阻尼改性白炭黑能高效地提高硅橡胶的阻尼性能,向低苯基硅橡胶和甲基乙烯基硅橡胶中加入52. 5份阻尼改性白炭黑,硅橡胶高温区域的阻尼性能即可显著提高,同时保持较好的力学性能。低苯基硅橡胶的有效阻尼温域可达120℃,损耗因子tanδmax为0. 36,拉伸强度为5. 08 MPa,拉断伸长率为497%,邵尔A硬度为41度;甲基乙烯基硅橡胶的有效阻尼温域可达130℃,tanδmax为0. 34,拉伸强度为5. 56 MPa,拉断伸长率为600%,邵尔A硬度为44度。  相似文献   

6.
用响应面优化法优化了乙烯基封端PDMS/PVDF渗透汽化透醇膜的制膜条件,研究了硅橡胶浓度、B/A质量比、交联温度和交联时间对膜性能的影响,拟合了分离因子、渗透通量与四因素之间的回归方程,并用方差分析法考察了四因素的主效应、二次效应以及相互作用效应对复合膜的分离因子与渗透通量的影响。研究发现,硅橡胶浓度对膜的分离因子与渗透通量的影响最为显著,交联时间对分离因子几乎没有影响。通过对回归方程的优化分析得知,在料液乙醇浓度为10%(wt),操作温度40℃条件下,当硅橡胶浓度为93%(wt),B/A质量比为0.08,交联温度为100℃,交联时间为13.83 h时,膜的综合分离性能达到最佳,此时分离因子与渗透通量预测值分别为9.47、77.57 g(m2 h)1,渗透侧乙醇浓度达到51.3%(wt)。回归方程的验证实验结果表明,回归方程的估计值与实验值较为吻合,可用于乙烯基封端的PDMS/PVDF复合膜的渗透汽化性能的预测与优化。  相似文献   

7.
制备了一系列双组分加成型硅橡胶(PDMS)膜及ZSM-5沸石填充PDMS复合膜,用于渗透汽化法分离甲醇,碳酸二甲酯混合物,考察了C6-530双组分硅橡胶A/B组分比例、后处理温度、沸石填充浓度、操作温度对渗透汽化分离性能的影响.  相似文献   

8.
将纳米级白炭黑填充于PDMS制备了白炭黑填充PDMS/PVDF复合膜,采用红外(FT-IR)、热失重(TGA)和接触角(CA)等方法对填充复合膜进行了分析和表征,并采用纳滤的方法系统研究了复合膜对大豆油/己烷混合油的分离性能。结果表明,白炭黑填充能有效促进PDMS的交联,提高PDMS的疏水性、热失重温度以及对溶剂的稳定性;白炭黑填充量增加使复合膜渗透通量降低,但截留率从96%提高到98%;随溶液浓度增加,渗透通量和截留率同时降低;随温度的升高,渗透通量上升,截留率降低。大豆油和己烷在膜中的传质特性可用不完全的溶解-扩散模型描述,溶液渗透压实验值与计算值符合较好。  相似文献   

9.
研究了二氧化硅(白炭黑)比表面积对硅橡胶泡沫材料发泡性能的影响。结果表明:填充比表面积(300±25)m~2/g的二氧化硅时,硅橡胶发泡性能较好,硅橡胶泡沫材料表观密度可达0.17 g/cm~3;高、低比表面积二氧化硅配合使用,当比表面积(160±15)m~2/g的二氧化硅用量为5份时,硅橡胶发泡性能较好,拉伸强度为0.17 MPa,表观密度为0.20 g/cm~3,且表观密度亏损较少。  相似文献   

10.
以硅烷改性ZSM-5分子筛为填充剂,采用沉浸凝胶相转化法制备了ZSM-5/BPPO非对称膜. 结果表明,分子筛在BPPO膜中分散均匀,填充分子筛后膜表面粗糙度增大、疏水性增强. 以低浓度乙醇-水体系为研究对象,考察了分子筛填充量、进料液浓度及进料液温度对ZSM-5/BPPO膜渗透汽化分离性能的影响. 结果表明,随乙醇浓度增大,ZSM-5/BPPO膜的分离因子减小,渗透通量增大;随进料液温度升高,ZSM-5/BPPO膜的分离因子及渗透通量均增大;在60℃、分子筛填充量为0.3%(w)时,ZSM-5/BPPO膜对5%(w)乙醇-水体系的分离因子高达18.49,渗透通量为529.69 g/(m2×h). ZSM-5/BPPO膜对不同醇-水体系的分离结果表明,醇类分子量越大,膜分离性能越好.  相似文献   

11.
Traditional solvent recovery in the extraction step of edible oil processing is distillation, which consumes large amounts of energy. If the distillation is replaced by membrane process, the energy consumption can be reduced greatly. In this work, two kinds of membrane, PDMS (polydimethylsiloxane) composite membrane and Zeolite filled PDMS membrane were prepared, in which asymmetric microporous PVDF (polyvinylidenefluoride) membrane prepared with phase inversion method was functioned as the microporous supporting layer in the flat-plate composite membrane. The different function compositions of the PDMS/PVDF com-posite membranes were characterized by reflection Fourier transform infrared (FTIR) spectroscopy. The surface and section of PDMS/PVDF composite membranes were investigated by scanning electron microscope (SEM). The PDMS NF (nanofiltration) membranes were then applied in the recovery of hexane from soybean oil/hexane miscellas (1︰3, mass ratio). The effects of pres-sure (0.5-1.5 MPa), cross-linking temperature and PDMS layer thickness on membrane performances were investigated. The results indicated that both two kinds of NF membranes were promising for solvent recovery, and zeolite filled in PDMS NF membrane could enhance the separation performance.  相似文献   

12.
Hydrophobic polydimethylsiloxane — polytetrafluoroethylene (PDMS-PTFE) flat-sheet membranes for pervaporation (PV) of chloroform from aqueous solution were successfully fabricated by solution casting method. The structures and the performance of the membranes was characterized by X-ray diffraction (XRD), scanning electron microscope combined with energy dispersive X-ray spectroscopy (SEM-EDXS), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and the tests of contact angle and mechanical properties. The adding of PTFE particles (<4 μm) in the PDMS matrix enhanced the crystallinity, hydrophobicity, mechanical strength and thermal stability of the membranes. The examinations showed that the PTFE filled PDMS membranes exhibited striking advantages in flux and separation factor as compared with unfilled PDMS membranes. All the filled PDMS membranes with different PTFE content showed excellent PV properties for the separation of chloroform from water. When the content of the PTFE additive in PDMS composite membrane was 30 wt%, membrane performance was the best at feed temperature 50 °C and permeate-side vacuum 0.101MPa. For the 30% PTFE-PDMS membrane, with the increase of the feed temperature from 30 to 60 °C, the total, water and chloroform fluxes as well as the separation factor increased, the apparent activation energy (ΔEa) of total, chloroform and water were 21.08, 66.65 and 11.49 KJ/mol, respectively, with an increase of chloroform concentration in the feed from 50 to 950 ppm, total, water and chloroform fluxes increased but the separation factor decreased.  相似文献   

13.
在聚二甲基硅氧烷(PDMS)中填充质量分数为20wt%、25wt%和30wt%的疏水纳米二氧化硅溶胶作为表面皮层,以聚酰胺(PA)为支撑层,制备出改性硅橡胶-聚酰胺(PDMS—PA)复合膜。扫描电镜(SEM)观察发现二氧化硅颗粒均匀分布在PDMS基体中,改性皮层与PA支撑层结合紧密。用5%的乙醇水溶液对改性膜在不同温度下进行渗透汽化测试,发现填充比例为20wt%的膜的分离因子较未改性膜可提升25%,而填充比例为25wt%和30wt%时,膜的分离因子却低于未改性膜。这显示在PDMS中填充某种比例的硅溶胶可改善膜的分离性能。  相似文献   

14.
Composite membranes have attracted increasing attentions owing to their potential applications for CO2 separation. In this work, ceramic supported polydimethylsiloxane (PDMS) and poly (ethylene glycol) diacrylate (PEGDA) composite membranes were prepared. The microstructure and physicochemical properties of the compos- ite membranes were characterized. Preparation conditions were systematically optimized. The gas separation performance of the as-prepared membranes was studied by pure gas and binary gas permeation measurement of CO〉 N2 and H〉 Experiments showed that PDMS, as silicone rubber, exhibited larger permeance and lower separation factors. Conversely, PEGDA composite membrane presented smaller gas permeance but higher ideal selectivity for CO2/N2. Compared to the performance of those membranes using polymeric supports or freestanding membranes, the two kinds of ceramic supported composite membranes exhibited higher gas permeance and acceptable selectivity. Therefore, the ceramic supported composite membrane can be expected as a candidate for CO2 separation from light gases.  相似文献   

15.
The application of pervaporation (PV) to the removal of volatile organic from aqueous solutions has become very interesting in the last few years. It is caused by the increasing level of compounds, such as petrochemical solvents (benzene, toluene, and xylenes) or chlorinated solvents (trichloroethylene or tetrachloroethylene), which are polluting the natural environment. In this work, effects of polyimide (PI) (prepared by direct polycondensation of dianhydride and diamine followed by thermal cyclization of polyamic acid) filler on PV properties of poly(dimethyl siloxane) (PDMS) have been studied. PDMS membrane filled with PI was used for the separation of benzene (Bz) and toluene (Tol) from the diluted aqueous solution and the results were compared with the neat PDMS membrane of similar thickness. The PDMS‐PI membrane showed normalized flux (J′) upto 1.2 kg μm/m2h for Bz and 1.48 kg μm/m2h for Tol and selectivity of organics varies from 7.3 to 3.2 for Bz and 8.9 to 2.8 for Tol with increasing concentration of organics. Concentration of PI filler in PDMS varied 5–25% w/w. PI filler increases thermal as well as mechanical stability of filled PDMS membranes. PDMS membrane filled with 25% PI was chosen for the pervaporation studies. The membranes were characterized by FTIR, thermogravimetric analyser and scanning electron microscopy. The mechanical strength of PDMS filled with 25% w/w PI (SPI‐25) membrane was found to be 2.7 MPa. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
Hydrophobic ZSM-5 zeolite filled polydimethylsiloxane(PDMS) composite membranes with Nylon micro-filtration membrane as the support layer were prepared to separate acetaldehyde from its aqueous solution.The composite membranes were characterized by Fourier transform infrared spectroscopy and X-ray diffraction.Their structural morphology and thermal stability were also examined.The swelling study showed that the composite membranes presented higher degree of swelling in aqueous solution of acetaldehyde than in pure water at 25 C,suggesting that the membranes have stronger sorption capacity in acetaldehyde solution.The effects of ZSM-5 filling content and acetaldehyde concentration on pervaporation performance of composite membranes were investigated.The permeation experiments at different temperatures showed that both selectivity and permeation flux of composite membranes increased with temperature.With 5%ZSM-5-PDMS/Nylon membrane at acetaldehyde mass concentration of 8% and 25℃,the separation factor of acetaldehyde/water achieved 35 and the permeation flux was 233.3 g·m-2·h-1.  相似文献   

17.
Fumed‐silica‐filled polydimethylsiloxane (PDMS)–polyamide (PA) composite membranes were prepared by the introduction of hydrophobic fumed silica into a PDMS skin layer. The cross‐sectional morphology of these filled composite membranes was observed with scanning electron microscopy. Their pervaporation performances were tested with aqueous ethanol solutions at 30, 35, and 40°C. Increasing the amount of the fumed silica resulted in significantly enhanced ethanol permeability of the membranes. When the content of the fumed silica in the PDMS skin layer was 20 wt %, the ethanol permeability increased to nearly twice that of the unfilled PDMS–PA composite membrane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
Crosslinked polydimethylsiloxane/polyetherimide (PDMS/PEI) composite membranes were prepared, in which asymmetric microporous PEI membrane prepared with phase inversion method was acted as the microporous supporting layer in the flat‐plate composite membrane. The different function composition of the PDMS/PEI composite membranes were characterized by reflection Fourier transform infrared (FTIR) spectroscopy. The surface and section of PDMS/PEI composite membranes were investigated by scanning electron microscope (SEM). The composite membranes prepared in this work were employed in pervaporation separation of benzene/cyclohexane mixtures. Effects of feed temperature, feed composition, concentration of crosslinking agent on the separation efficiency of benzene/cyclohexane mixtures were investigated experimentally. In addition, the swelling rate and stableness of composite membrane during long time operation were studied, which should be significant for practical application. The results demonstrated that the pervaporation method could be very effective for separation of the benzene/cyclohexane mixtures. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
In this article, chlorosilane‐modified ZSM‐5 particles were incorporated into polydimethylsiloxane (PDMS) to form mixed matrix membranes (MMMs) for ethanol/water mixture separation via pervaporation (PV). The membranes were characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, scanning electron microscopy, and mechanical performance testing. The maximum loading and dispersion of ZSM‐5 into PDMS were improved by chlorosilane modification. To evaluate the PV performance, the MMMs were used to separate an aqueous ethanol solution. The effect of zeolite loading and operational conditions on PV performance was investigated in detail. The separation factor of the composite membranes filled with modified ZSM‐5 increased considerably versus unmodified membrane, while the total flux decreased to some degree. Of all the chlorosilane‐modified membranes, dodecyltrichlorosilane modified ZSM‐5 filled PDMS showed the best separation factor of 15.8 for ethanol. POLYM. COMPOS., 37:1282–1291, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号