首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Planning》2020,(1):119-124
学术界对低渗透储层是否存在强应力敏感具有较大争议,给油气生产决策带来困扰。争论的焦点在于,渗透率应力敏感实验过程中岩芯是否发生塑性变形,岩芯与封套之间是否存在微间隙及其对实验结果是否具有重要影响。针对传统实验无法证明岩芯是否发生塑性变形的问题,改进实验方法,在渗透率测试前、后增加岩芯力学测试。根据弹性力学理论和有效应力理论,推导出应力敏感评价的理论公式,并进行了定量计算。实验测试和理论计算结果表明,应力敏感实验过程中,岩芯所受的有效应力小于其弹性极限,岩芯不会产生塑性变形;岩芯与封套之间存在微间隙,对渗透率测试结果及变化规律具有重要影响;低渗透岩芯在低有效应力条件下测得的渗透率具有较大误差;微间隙的存在导致岩芯的应力敏感程度被高估;实验过程中岩芯的应变极小,渗透率变化极其微弱;低渗透储层不存在强应力敏感,一般来说岩石渗透率越低应力敏感性越弱。  相似文献   

2.
特低渗储层不同渗流介质应力敏感特征及其评价方法研究   总被引:1,自引:0,他引:1  
 地层岩石的渗透率应力敏感特征对于地下油气资源开发、核废料地下处置等具有极为重要的影响。选取大庆油田外围特低渗油藏及长庆油田某露头储层砂岩岩石进行不同渗流介质(氮气、盐水、煤油)渗透率应力性试验,分析岩样渗透率、孔喉变形、流体压缩性及流固耦合作用机制等因素对应力敏感性的影响。试验结果表明,特低渗储层岩石不同渗流介质渗透率应力敏感性具有明显的差异,气测渗透率与束缚水状态下的油相有效渗透率在有效应力增加初期(2~16 MPa变化区间)急剧减小,但有效应力增加后期水测与油测渗透率仍具有较为明显的减小趋势。1×10-3 μm2是特低渗岩石气测与水测渗透率应力敏感性强弱对比发生变化的临界渗透率。有效应力作用下作为主要渗流通道的较大孔喉首先被压缩变形是导致渗透率在有效应力加载初期急剧减小的主要原因,不同渗流介质压缩性和流固耦合作用机制差异是导致气、液渗透率应力敏感性差异的主要原因。特低渗油藏储层应力敏感性评价中应以油相作为渗流介质进行评价试验。提出区分岩芯与油气储层2种不同的渗透率应力敏感性试验及其评价方法。在实际油藏储层有效应力变化范围内,特低渗储层渗透率应力敏感性较弱。  相似文献   

3.
异常高压气藏应力敏感性研究   总被引:5,自引:1,他引:5  
 克拉2异常高压气藏是目前我国探明的最大整装干气气藏,属于异常高压气藏。对于这种具有极高异常压力的气藏,在衰竭式开采过程中,地层压力逐渐下降,作用在岩石颗粒上的有效应力增加。这种效应有可能产生岩石形变,产生应力敏感,使得岩石物性参数孔隙度、渗透率减小,从而影响到气藏流体的流动动态及气井产能,给高效、合理地开发带来许多困难和问题。为此,设计模拟地层条件下储层应力敏感的试验流程与试验方法,以克拉2异常高压气藏的砂岩岩芯为试验对象,进行不同有效应力下储层物性应力敏感性试验以及应力敏感岩芯往复试验研究。试验结果表明,初始渗透率越低,则应力敏感性越强,孔隙度对有效应力的敏感性低于渗透率的应力敏感性。同时,通过三轴高温、高压岩石变形与渗透试验仪得到岩石典型的全应力–应变曲线,定量描述地层压力降低后,岩石出现永久塑性变形的特征,这是储层物性产生应力敏感性的原因。这些研究对该气藏合理开发是非常必要的,对气藏动态储量的计算、产能评价及合理生产工作制度的确定具有重要意义。  相似文献   

4.
储层条件下低渗透岩石应力敏感评价   总被引:7,自引:1,他引:6  
 针对某低渗透油藏实际地质特征,分别采用两种评价方法,模拟储层在开采和注水过程中的应力敏感特性。结果表明,在采用新评价方法时,储层在开采过程中由于有效应力增加引起的渗透率损失率明显小于常规方法评价结果。在对注水开发过程的模拟中,新方法评价得出储层的渗透率可以恢复,而常规方法评价储层的应力敏感性具有不可恢复性。采用常规应力敏感评价实验时,岩芯的变形既有弹性变形,又有塑性变形,储层表现出较强的应力敏感。采用新评价方法岩芯变形以弹性变形为主,低渗透储层不存在严重的渗透率应力敏感,这对认识低渗透储层油藏条件下的应力敏感特性和指导低渗透油藏生产压差的制定具有重要意义。  相似文献   

5.
《Planning》2019,(1)
致密砂岩储层的应力敏感性研究对指导致密油气藏开发生产意义重大。鉴于目前常规研究方法无法模拟高温、高压的真实地层环境,以及评价标准(行业标准SY/T 5358—2010)并不适用于致密岩心的实际情况,本文在模拟真实地层高温、高压条件下,采用塔里木盆地库车东部地区的致密砂岩天然岩心进行应力敏感性评价实验。通过对实验结果进行半对数化坐标处理,并采用不同函数模型进行拟合,发现强应力敏感性岩心的渗透率与有效应力的关系符合指数递减规律,相关系数均在90%以上;随着有效应力的增加,渗透率下降明显分为"先陡后缓"2段,临界压力分别为9.5 MPa和11.28 MPa,前半段体现致密砂岩裂缝渗透率的应力敏感性,后半段体现基质渗透率的应力敏感性;通过不同岩心拟合后的应力敏感性曲线的对比发现,前半段曲线越陡,岩心微裂缝越发育。分析岩心、岩石薄片、扫描电镜、全岩X射线衍射及压汞实验数据可知,高岭石含量越高,石英等刚性颗粒含量越低,微裂缝及片状喉道发育的储层往往更容易表现强应力敏感性。  相似文献   

6.
岩石的渗流特性决定了石油开采效率,对于储层的定量评价具有重要意义。为了解岩石中孔洞裂缝以及不同介质对其渗流性能的影响规律,利用显微红外光谱成像技术,对岩石样品进行光谱成像试验,根据样品的光谱图像和吸光度A值,将该岩石截面划分为孔隙裂缝区域、孔隙与岩石介质过渡区域、白云岩介质区域;据此建立能够精确表征真实岩石结构的有限元模型,对其微观渗流特性进行数值模拟研究。研究结果表明:(1)该岩石样品的特征吸收波段为2 500~2 700 cm^(-1),说明样品介质主要为白云岩;(2)同一平面的二维流动中流体的动力黏度越大,流体在孔道中的流动速度越小;(3)多孔白云岩介质的渗透率较小时,流体主要以沿裂隙孔道的自由流动为主,而介质中渗流运动较弱;随着介质渗透率的增大,多孔介质中的流体渗流运动逐渐明显;(4)孔喉尺寸较小的孔道,毛细管阻力较大,孔道中流体不发生流动;孔喉尺寸扩大后,优势水流路径数量增加,岩石截面中流体流动范围增大,流动速度变大。此研究结果可以为石油开采中储层改造方案的制定提供科学依据,从而有效提高石油开采效率。  相似文献   

7.
基于显微红外光谱技术的岩石微观渗流特性研究   总被引:1,自引:0,他引:1  
岩石的渗流特性决定了石油开采效率,对于储层的定量评价具有重要意义。为了解岩石中孔洞裂缝以及不同介质对其渗流性能的影响规律,利用显微红外光谱成像技术,对岩石样品进行光谱成像试验,根据样品的光谱图像和吸光度A值,将该岩石截面划分为孔隙裂缝区域、孔隙与岩石介质过渡区域、白云岩介质区域;据此建立能够精确表征真实岩石结构的有限元模型,对其微观渗流特性进行数值模拟研究。研究结果表明:(1)该岩石样品的特征吸收波段为2 500~2 700 cm~(-1),说明样品介质主要为白云岩;(2)同一平面的二维流动中流体的动力黏度越大,流体在孔道中的流动速度越小;(3)多孔白云岩介质的渗透率较小时,流体主要以沿裂隙孔道的自由流动为主,而介质中渗流运动较弱;随着介质渗透率的增大,多孔介质中的流体渗流运动逐渐明显;(4)孔喉尺寸较小的孔道,毛细管阻力较大,孔道中流体不发生流动;孔喉尺寸扩大后,优势水流路径数量增加,岩石截面中流体流动范围增大,流动速度变大。此研究结果可以为石油开采中储层改造方案的制定提供科学依据,从而有效提高石油开采效率。  相似文献   

8.
低渗透储层应力敏感性及其对石油开发的影响   总被引:4,自引:0,他引:4  
 为更深入研究低渗透储层的应力敏感性,以变径毛管束模型为基础,从理论上证明低渗透储层的强应力敏感性;并通过保持围压不变、改变流体压力的试验方法研究有效应力、孔隙结构及应力加载方式对储层渗透率的影响;在此基础上,利用数值模拟技术详细研究不同储层条件下的应力敏感性对油田生产的影响。研究结果表明:应力变化对孔隙度的影响较弱,而对渗透率的影响较大,低渗透储层渗透率应力敏感性更强;储层应力敏感性与孔隙结构、有效应力及其加载方式密切相关;渗透率越小、有效应力越大、应力加载速度越快,则储层的应力敏感性越大,且随着有效应力的减小,渗透率存在永久伤害,难以恢复至初始值;生产井的生产压差与应力敏感系数呈指数关系,储层非均质性越强、渗透率越小,应力敏感性越大,对油田生产的影响越大,而油藏韵律性对储层应力敏感影响较小。该研究结果对于合理开发低渗透油藏具有一定的指导作用。  相似文献   

9.
《Planning》2019,(1):91-92
为探究有效应力变化对鄂尔多斯盆地低渗砂岩储层地层因素的影响,实验测试7块岩芯样品在围压(p_c)和内压(也称作孔隙压,p_p)变化下的地层因素。基于Biot有效应力定义,结合响应面函数对实验数据进行分析,发现采用响应面割线法得到的有效应力系数(α)更能准确地表征有效应力,同时发现α并非为1.00的常数,而是分布在0.04~0.60并与围压和内压呈现一定函数关系。明确了低渗砂岩储层地层因素随有效应力的非线性变化规律,发育的微裂缝是导致有效应力非线性变化的主要因素。基于岩芯微观结构建立等效微裂缝模型,结合岩电理论,推导出地层因素与有效应力间的函数关系,表征了低渗透砂岩储层非线性有效应力作用下地层因素的变化规律。  相似文献   

10.
二氧化碳地质储存注入过程的多期次、间断性引起储层应力反复变化,导致储层渗透率和孔隙结构改变,影响CO2的注入和储存。通过试验研究了鄂尔多斯CCS示范工程刘家沟组砂岩储层渗透率在围压和注入压多期次循环加、卸载条件下的变化规律,并分析了试验前后岩石微观孔隙结构特征变化。结果表明:(1)围压和注入压的多期次循环变化对岩石渗透率影响显著,且渗透率在低压区相对变化幅度和变化率均大于高压区;(2)分别构建了岩样渗透率随围压和注入压变化的数学模型,不同循环过程的数学模型相差较大;(3)在不同的应力作用方式下,间断期对渗透率变化影响程度不同。相比于变围压条件,变注入压条件下的渗透率在间断期可以更好的恢复;(4)多次应力循环变化对岩石的微观孔隙结构具有显著影响,微孔及孔径较小的中孔的增加和大孔的减少导致岩样的渗透能力明显下降。在CO2地质储存工程的储存潜力评价和CO2运移演化预测中应对岩石渗透率和孔隙结构受应力变化的影响给予重视。  相似文献   

11.
低渗透岩石渗透率对有效应力敏感系数的试验研究   总被引:12,自引:5,他引:12  
低渗透岩石渗流过程中存在明显的流固耦合效应,采用FDES–641驱替评价系统对采自长庆油田的砂岩岩样进行试验和分析以研究低渗透岩石渗透率与有效应力之间的关系。试验结果表明,岩石渗透率随着有效应力的增加而呈现规律性减小。但鉴于影响岩石渗透率的渗流耦合因素很复杂,可以通过定义渗透率对有效应力的敏感系数从而将影响因素进行归一化处理。敏感系数可以反映出岩石渗透率随有效应力的变化趋势。根据试验结果建立敏感系数与有效应力之间的函数关系,从而把求取在不同有效应力下岩石渗透率的值转化为对其敏感系数的确定,并据此推导岩样渗透率与有效应力的函数关系式。  相似文献   

12.
王立辉 《矿产勘查》2020,11(1):157-162
近年来,随着煤层气开采技术的进一步发展,国内煤层气开发已具有一定规模。由于煤层气储层具有低渗透裂缝性的特征,压力敏感性强,导致钻井过程中容易造成储层损害。因此,开展低渗透裂缝性煤层气储层的压力敏感性研究具有重要的意义。结合山西沁水盆地某区块的煤心,分别开展了煤岩受围压和孔隙压力条件下的压力敏感性实验研究,分析了煤岩渗透率随围压和孔隙压力的变化规律,探讨了孔隙压力和裂缝宽度的内在联系,认为围压增大和孔隙压力降低都会导致煤岩裂缝宽度变小,造成煤层气储层渗透率降低。  相似文献   

13.
甘肃北山是我国高放废物深地质处置的预选场址,其花岗岩具有完整性及均匀性好、孔隙率及渗透率低等重要特点。采用气体瞬态压力脉冲法测试不同围压下北山花岗岩在三轴压缩过程中的渗透率变化特征。结合花岗岩在偏应力演化过程中微裂纹的萌生、扩展机制以及应力-应变曲线的变化特征分析,采用细观力学方法研究北山花岗岩在三轴压缩过程中渗透率的演化机制。分析结果表明:(1)北山花岗岩的初始渗透率在10-19 m2量级,对应于应力-应变曲线,其渗透率曲线随着偏应力增加总体呈现出下降段、水平段、稳定增长段以及急剧上升段的变化特征;(2)初始微裂纹的压缩闭合可导致试样的渗透率下降约1个数量级,峰前破坏时渗透率的增幅可达2~3个数量级,围压从5 MPa增大至10 MPa可导致渗透率减小1个数量级;(3)细观力学模型的计算值与试验值吻合良好,北山花岗岩试样的宏观力学响应及渗透特性与试样内部微裂纹的细观结构特征及连通性的变化密切相关,岩石渗透率变化和损伤演化具有良好的一致性,且损伤的发育可导致渗透率呈现较弱的各向异性特征。研究成果对于我国高放废物深地质处置工程中围岩的开挖扰动机制、渗透特性演化规律以及处置库系统的性能评价具有重要意义。  相似文献   

14.
《Planning》2016,(5):157-164
确定三元复合驱对储层关键物性特征参数变化的影响程度是保证三元复合驱应用效果的重要前提。利用岩芯驱替及原子力显微镜探测等实验,对大庆油田某区块三元复合驱前后岩芯润湿性、敏感性、孔隙度与渗透率等物性参数的变化规律进行系统评价和分析。相对渗透率测定结果表明三元复合驱后储层岩石润湿性会发生改变,亲油性储层岩芯可反转为亲水润湿性;敏感性实验表明,三元复合体系对储层不同敏感性造成不同影响,主要表现在驱后水敏性增加但速敏性、酸敏性、碱敏性等有所降低。对储层孔渗统计分析表明,三元复合驱后岩芯孔隙度和渗透率绝对值均有所增加,且二者相关性较好;结合原子力显微镜对岩芯微观孔隙结构的观测结果进一步验证了孔渗改善的相关认识。  相似文献   

15.
煤层气开采过程中,由于裂隙与基质渗透率性能差异性较大,导致储层在长时间内都将处于非平衡的动态调整阶段。然而,目前大多数的试验和渗透率模型只考虑某一固定气体压力的影响,这极大地限制了对非平衡状态下储层气体流动的研究。为此,基于储层为双重孔隙介质的概念,考虑开采过程中基质–裂隙不同的孔隙压力、解吸变形和力学作用对裂隙开度演化的影响,提出了一种预测气体在非平衡状态下的渗透率模型,并用现场数据进行了验证。进一步将渗透率模型代入气体流动方程,采用有限元软件分析了岩芯内基质–裂隙的孔隙压力和渗透率随时空的演变规律。研究结果表明:在岩芯解吸过程中,(1)岩芯内裂隙气体压力受扰动范围大于基质气体压力;(2)基质–裂隙气体压力和渗透率沿岩芯长度呈现非线性分布;(3)基质–裂隙渗透率变化趋势相同。  相似文献   

16.
低渗砂岩储层渗透率有效应力定律试验研究   总被引:8,自引:1,他引:7  
 试验设计多个回路,各个回路的孔隙流体压力不同,每一回路在孔隙流体压力不变,增加和降低围压方式下进行。试验过程中采用稳态法测定不同围压和孔隙流体压力下的岩芯渗透率,并用响应面法对试验结果进行处理分析。结果表明,有效应力系数a 随围压和孔隙流体压力的变化而变化。当围压很大时,试验研究得到的有效应力系数很小,这与过去试验研究的结果差别很大。最后用有效应力系数a = 1.0和本次试验获取的有效应力系数对低渗砂岩岩样进行应力敏感性评价。用有效应力系数a = 1.0评价的结果是储层存在强应力敏感,而用本次试验获取的有效应力系数的评价结果是储层表现为弱应力敏感性。  相似文献   

17.
贯通充填裂隙类岩石渗流特性试验研究   总被引:2,自引:0,他引:2  
利用3D打印技术制作平行、合并、T型、斜交以及正交裂隙,通过模具浇筑成贯通充填裂隙类岩石试样,应用低渗透岩石惰性气体渗透测试系统测试不同围压加卸载条件下贯通充填裂隙类岩石渗流特性,研究具有不同渗透结构面试样在不同围压作用下气体渗透率的变化规律。通过试验研究发现:充填物相同情况下,开度相同,形式不同的渗透结构面试样渗透率不同,但数量级上不存在差异,以围压加载25 MPa为例,平行裂隙试样渗透率最大,合并裂隙试样渗透率最小;试样渗透率随围压变化曲线在围压加载阶段高于卸载阶段,不同渗透结构面试样渗透率随围压变化波动幅度不同;围压加载阶段贯通充填裂隙类岩石渗透率与围压关系符合多项式函数;不同试样渗透率对应力敏感系数随围压变化曲线在围压加载阶段变化趋势不尽相同,在围压卸载阶段各曲线变化趋于接近,呈"W"型,贯通充填裂隙类岩石渗透率对应力敏感性受渗透结构面影响。  相似文献   

18.
 采用全自动三轴伺服仪,对花岗片麻岩开展渗流应力耦合试验,研究常规三轴压缩和轴压循环加卸载2种应力路径下,渗透率与渗压、围压、有效围压、体积应变及应力路径等因素的关系。结果表明:(1) 在2种不同应力路径下,岩石渗透率演化规律有差异性和一致性,同种路径下变形各阶段渗透率随有效围压增大而减小,但渗透率曲线的形态保持不变;(2) 渗压和围压对渗透率的影响,通过对岩石变形过程中内部微裂纹和孔隙变化产生作用,有效应力系数发生改变,有效围压效应随之改变;(3) 循环加卸载试验中,卸载渗透率均明显大于相应加载渗透率,体积应变转折前,加载渗透率减小,卸载后渗透率增加,形成比较完整的渗透率回滞环,体积应变转折后,加载渗透率增大,卸载渗透率降低不能够完全恢复;(4) 体积应变较轴向应变更清楚和灵敏反映渗透率变化规律,可把体积转折应变或其对应应力作为岩石渗透率变化的一项指标。试验研究旨在为岩石工程渗流–应力耦合稳定性分析提供参考。  相似文献   

19.
岩石的力学性质与渗透特性与应力,温度及渗透压力具有密切关系。运用Rock Top多场耦合试验仪对红砂岩进行100℃高温下不同静水压力与渗透压差条件下的温度–应力–渗流耦合试验研究。研究结果表明:(1)100℃高温下红砂岩全应力–应变经历裂隙压密→线弹性变形→微裂纹稳定发展→非稳定破裂发展→峰后变形与破坏5个阶段;(2)对应岩石应力–应变曲线,流量随应力差的增大呈现反向急速溢出段,反向稳定溢出段,急剧上升段,稳定增长段,此时渗透率随应力差的增大呈现先由初始值下降,保持水平常值,急速增长至伪峰值后衰落,稳定增长至真峰值等变化特征;(3)红砂岩在高温、高围压作用下的渗透率随围压的等梯度增长近似呈线性降低趋势,在高围压下渗透压差对渗透率影响并不明显,渗透率值趋于稳定,2种方法均显示红砂岩属于典型低渗类岩石;(4)相同围压与渗透压差下,瞬态法与稳态法2种渗透率测试方法所测结果相近,在30~60 MPa围压范围内,压力条件是影响渗透率的主要原因。  相似文献   

20.
基于Tight gas致密砂岩储层渗透率的有效应力特性研究   总被引:2,自引:2,他引:0  
 Tight gas是一种非传统新型能源,其储层通常为砂岩储层,具有很低的孔隙率(<10%)和渗透率(<0.1 mD)。合理确定Tight gas储层岩石的有效应力,了解其储藏动态,为制定和调整开发方案及实施综合治理提供依据。研究表明,针对土提出的有效应力原理对于岩石,特别是储油或储气岩石不再适用。在其基础上,提出改进的有效应力原理,即 ,其中? 称为Biot系数(又称有效应力系数)。因此,如何确定Tight gas 储层岩石的Biot系数,成为合理确定有效应力的关键。在此研究中,通过测定多组不同外部控制压力和孔隙压力下岩石的渗透率,对试验结果用Cross-plotting方法得到Tight gas致密砂岩储层的Biot系数。结果表明:(1) Tight gas 储层砂岩具有低渗透率,其数量级为0.010~0.001 mD,而且相同控制压力下,渗透率与孔隙压力近似成指数函数关系;(2) Biot系数随渗透率的变化而变化,渗透率越小,Biot系数越小,相反,渗透率越大,Biot系数也越大;(3) 试验所取岩样的平均Biot系数分别为0.509和0.612。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号