首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arrayed porous iron-doped TiO2 with controllable pore size was prepared by using polystyrene spheres and its structure, morphology, composition and photoelectrochemical properties were characterized with X-ray diffraction, scanning electron microscope, inductively coupled plasma-atomic emission spectrometer and electrochemical methods. It is found that the photoelectrochemical properties of the arrayed porous TiO2 can be improved by doping adequate amount of iron in the lattice of TiO2 and the sample doped with 0.01 wt% Fe (based on Ti) exhibits the best photoelectrochemical performance. With doping 0.01 wt% Fe in TiO2, the photocurrent density of the sample is improved from 2.0 μA cm−2 to 10.0 μA cm−2 and its flat-band potential shifts from −0.38 V to −0.55 V (vs. SCE).  相似文献   

2.
Nanostructured hematite thin films were doped with zirconium successfully using electrodeposition method for their implementation as photoanode in photoelectrochemical (PEC) cell for hydrogen generation. XRD, Raman, XPS, SEM and UV-visible spectroscopy techniques were used to characterize the thin films. Highest photocurrent density of 2.1 mA/cm2 at 0.6 V/SCE was observed for 2.0 at.% Zr4+ doped α-Fe2O3 sample with solar to hydrogen conversion efficiency of 1.43%. Flatband potential (−0.74 V/SCE) and donor density (2.6 × 1021 cm−3) were found to be maximum for the same sample. These results suggest substantial potential of hematite thin films with controlled doping of zirconium in PEC water splitting applications.  相似文献   

3.
Nanoporous hematite (α-Fe2O3) thin films doped with Ti4+ deposited by spray-pyrolysis were successfully used in photoelectrochemical splitting of water for solar hydrogen production. X-ray diffraction, field emission scanning electron microscopy, UV–visible absorption and photoelectrochemical studies have been performed on the undoped and Ti4+ doped hematite thin films. Morphology of α-Fe2O3 thin films was observed to be nanoporous, with increased porosity (pore size ∼12 to 20 nm) on increasing doping concentration. A significant decrease in the bandgap energy from 1.95 to 1.27 eV was found due to doping. α-Fe2O3 film doped with 0.02 M Ti4+ ions exhibited best solar to hydrogen conversion efficiency (photoconversion efficiency) of 1.38% at 0.5 V/SCE. Highest photocurrent densities of 0.34 mA/cm2 at zero bias and 1.98 mA/cm2 at 0.5 V/SCE were obtained by incorporating 0.02 M Ti4+ in α-Fe2O3, which are significantly larger than earlier reported values. Donor density (30.8 × 1020 cm−3) and flatband potential (−1.01 V/SCE) obtained were also maximum for this sample. Hydrogen collected in 1 hr at Pt electrode with the best photoelectrode was 2.44 mL with 150 mW/cm2 visible light source.  相似文献   

4.
Ternary silver-indium-sulfide samples were deposited on fluorine-doped tin oxide (FTO) coated glass substrates using a one-step electrodeposition method. A new procedure for the deposition of AgInS2 samples is reported. The effect of the [Ag]/[In] molar ratio in solution bath on the structural, morphological, and photoelectrochemical properties of samples was examined. X-ray diffraction patterns of samples show that the films are the AgInS2 phase. The thickness, direct band gap, and indirect band gap of the films were in the ranges 209-1021 nm, 1.82-1.85 eV, and 1.44-1.51 eV, respectively. The carrier densities and flat-band potentials of films obtained from Mott-Schottky and open-circuit potential measurements were in the ranges of 4.2×1019-9.5×1019 cm−3 and −0.736 to −0.946 V vs. the normal hydrogen electrode (NHE), respectively. It was found that the samples with molar ratio [Ag]/[In]=0.8 in solution bath had a maximum photocurrent density of 9.28 mA/cm2 with an applied bias of +1.0 V vs. an Ag/AgCl electrode in contact with electrolyte containing 0.25 M K2SO3 and 0.35 M Na2S. The results show that high-quality AgInS2 films can be deposited on FTO-coated glass substrates for photoelectrochemical (PEC) applications.  相似文献   

5.
Ternary silver-indium-sulfide samples were deposited on various substrates using the sulfurization of Ag-In metal precursors. A new procedure for the deposition of AgInS2 samples is reported. The effect of the [Ag]/[In] molar ratio in metal precursors on the structural, morphological, and photoelectrochemical properties of the samples was examined. X-ray diffraction patterns of samples show that the films are in the polycrystalline AgInS2 phase. The thickness and direct band gap of the films were in the ranges of 1.1-1.2 μm and 1.92-1.94 eV, respectively. The conduction type of all samples was n-type. The carrier concentration, mobility, and resistivity of samples were in the ranges of 1.5×1013-7.0×1013 cm−3, 2.6-14.8 cm2V−1s−1, and 2.6×104-3.5×104 Ωcm, respectively. It was found that the samples with an [Ag]/[In] molar ratio of 0.89 in Ag-In metal precursors had a maximum photo-enhancement current density of 2.43 mAcm−2 at an applied bias of +0.5 V vs. an Ag/AgCl electrode in contact with electrolyte containing 0.5 M K2SO4. The results show that high-quality AgInS2 films can be obtained using the sulfurization of Ag-In metal precursors for photoelectrochemical (PEC) applications.  相似文献   

6.
A photo-rechargeable supercapacitor (photo-supercapacitor, or PSC) is studied using a N3-dye adsorbed TiO2 photoelectrode and PProDOT-Et2 poly(3,3-diethyl-3,4-dihydro-2H-thieno-[3,4-b][1,4]dioxepine) polymer films as supercapacitor materials for electron storage. The PSC device, comprising a dye-sensitized solar cell (DSSC) and a supercapacitor (SC), can store the photo-to-electric energy. The PProDOT-Et2 films are potentiostatically electropolymerized to form thick films (ca. 0.5 mm) with a specific capacitance of ca. 6.5 F cm−2. A symmetrical (p/p) supercapacitor, with PProDOT-Et2 coated on both electrodes, is also characterized before fabricating the three-electrode PSC. The PSC is tested under light illumination of 100 mW cm−2, and attaining a photocharged voltage of 0.75 V and a discharged energy density of 21.3 μWh cm−2.  相似文献   

7.
The electrochromic and photocatalytic properties of vanadium-doped tungsten trioxide thin films prepared at room temperature (300 K) by the electron beam evaporation technique are reported in this paper. The vanadium to tungsten ratio (V/W) in these films are 0.003, 0.019, 0.029 and 0.047. The optical band gap of the vanadium-doped tungsten oxide (WO3) thin film initially increases from 3.16 to 3.28 eV for V/W ratio 0.003 then decreases to 3.15 eV for V/W ratio 0.047. These vanadium-doped films switch between neutral gray and transparent states. The coloration efficiency (CE) decreases from 82 cm2 C−1 (pure WO3) to 27 cm2 C−1 for the film containing V/W ratio 0.047. The photocatalytic activity has enhanced with vanadium doping and maximum activity of 15% (percentage change in optical density of methylene blue due to photo degradation) has been observed for the film containing V/W ratio of 0.019. The Kelvin probe measurements show that the work function of pure WO3 films is 4.07 eV and vanadium doping initially increases the work function to 4.19 eV for V/W ratio 0.019 and then decreases it to 3.97 eV for film with V/W ratio 0.047.  相似文献   

8.
Fe3+ doped TiO2 photocatalysts were prepared by hydrothermal treatment for the photocatalytic water splitting to produce stoichiometric hydrogen and oxygen under visible light irradiation. It was found that hydrothermal treatment at 110 °C for 10 h was essential for the synthesis of highly stabilized Fe3+ doped TiO2 photocatalysts. The synthesized photocatalysts were characterized by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS) and BET surface area techniques. The doping of highly stabilized Fe3+ in the titania matrix leads to significant red shift of optical response towards visible light owing to the reduced band gap energy. Optimum amount of Fe3+ doped TiO2, 1.0 wt% Fe/TiO2, showed drastically improved hydrogen production performance of 12.5 μmol-H2/h in aqueous methanol and 1.8 μmol-H2/h in pure water, respectively. This Fe/TiO2 photocatalyst was stable for 36 h without significant deactivation in the water splitting reaction.  相似文献   

9.
This paper deals with a study on the effect of 120 MeV Ag9+ ion irradiation on photoelectrochemical properties of SrTiO3 thin films deposited on Indium doped Tin Oxide (ITO) coated glass by sol-gel spin-coating technique. The structural evolution in the pristine and irradiated films was determined by X-ray diffraction and X-ray photoelectron spectroscopy. Surface morphology was studied by Atomic Force Microscopy (AFM) and optical measurements were done by UV-visible absorption spectroscopy. Irradiation of SrTiO3 thin films was found to be effective in improving its photoelectrochemical properties. A noticeable decrease in the average grain diameter from 36 to 26 nm, reduction in bandgap from 3.55 to 3.43 eV and increase in roughness after irradiation contributed in enhancing photoelectrochemical activity of SrTiO3 thin films. Thin films irradiated at fluence 3 × 1012 ions cm−2, when used in PEC cell exhibited enhanced photocurrent of 0.16 mA cm−2 at zero bias conditions, which was four times higher than that of the unirradiated sample.  相似文献   

10.
Electrochromic TiO2 anatase thin films on F-doped tin oxide (FTO) substrates were prepared by doctor blade method using a colloidal solution of titanium oxide with particles of 15 nm in size. The films were transparent in the visible range and well colored in a solution of 1 M LiClO4 in propylene carbonate. The transmittances of the colored films were found to be strongly dependent on the Li+ inserted charges. The response time of the electrochromic device coloration was found to be as small as 2 s for a 1 cm2 sample and the coloration efficiency at a wavelength of 550 nm reached a value as high as 33.7 cm2 C−1 for a 600 nm thick nanocrystalline-TiO2 on a FTO-coated glass substrate. Combining the experimental data obtained from in situ transmittance spectra and in situ X-ray diffraction analysis with the data from chronoamperometric measurements, it was clearly demonstrated that Li+ insertion (extraction) into (out of) the TiO2 anatase films resulted in the formation (disappearance) of the Li0.5TiO2 compound. Potential application of nanocrystalline porous TiO2 films in large-area electrochromic windows may be considered.  相似文献   

11.
Thermal degradation mechanism of the self-assembled thin films of [Ru(dcbpyH)2-(CN)2] (Ruthenium 505, R505) anchoring on TiO2 surfaces via its carboxylate group has been examined by temperature-dependent diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The CN stretching bands of R505 at 2000-2100 cm−1 appeared to change drastically at ≈140 °C on TiO2 surfaces, whereas a major CN peak at ∼2090 cm−1 disappeared at a much higher temperature above ≈250 °C in their solid states. Two-dimensional (2D) correlation analysis was introduced to explain the thermal desorption behaviors of the Ruthenium dye. Multiple peaks of the CN stretching vibrations are more clearly resolved in the 2D correlation analysis. More complicated features in the CN stretching vibrational spectra on TiO2 than those of the solid states suggest a substantial interaction of the CN groups with the TiO2 surfaces.  相似文献   

12.
As electro-active electrodes for supercapacitors, micro polypyrrole (PPy) films doping with ClO4 (PPyClO4) and Cl (PPyCl) are prepared on Ni layers modified three-dimensional (3D) structures in Si substrates. The key process to fabricate the 3D structures is high-aspect-ratio deep reactive ion etching, which result in significant increase of available surface area. Homogeneous conformal Ni layers and PPy films are deposited on the 3D structures by electroless plating and electropolymerization, respectively. The supercapacitor properties of PPy films are investigated by using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge with three-electrode system in NaCl solution. It is shown that doping with ClO4 results in ideal supercapacitor behaviors with rectangle-like CV shapes at scan rates from 5 to 200 mV s−1, linear galvanostatic charge/discharge curves at current loads from 0.5 to 2 mA and stable cyclic property. However, doping with Cl gives rise to non-ideal properties of supercapacitor. SEM of the PPyClO4 shows that the surface of the PPyClO4 electrode is smooth and the thickness of the PPyClO4 film is about 2.5 μm. The geometric capacitance of PPyClO4 is calculated as 0.030 F cm−2 from CV at scan rate of 100 mV s−1, 0.023 F cm−2 from EIS and 0.027 F cm−2 from galvanostatic discharge at 1 mA cm−2 current density.  相似文献   

13.
Gel polymer electrolyte films based on thermoplastic polyurethane (TPU)/poly(vinylidene fluoride) (PVdF) with and without in situ ceramic fillers (SiO2 and TiO2) are prepared by electrospinning 9 wt% polymer solution at room temperature. The electrospun TPU-PVdF blending membrane with 3% in situ TiO2 shows a highest ionic conductivity of 4.8 × 10−3 S cm−1 with electrochemical stability up to 5.4 V versus Li+/Li at room temperature and has a high tensile strength (8.7 ± 0.3 MPa) and % elongation at break (110.3 ± 0.2). With the superior electrochemical and mechanical performance, it is very suitable for application in polymer lithium ion batteries.  相似文献   

14.
We report on the visible light-driven hydrogen production from splitting of water molecules by nitrogen-doped TiO2 (N-TiO2) with a rice grain-like nanostructure morphology. The N-TiO2 nanostructures are prepared using sol-gel and electrospinning methods followed by post-annealing of the composite nanofibers. The nanostructures are characterized by microscopy and spectroscopy. First order rate constants for the visible light-assisted photocatalysis in the degradation of methylene blue (MB) dye are found to be 0.2 × 10−3 and 1.8 × 10−3 min−1 for TiO2 and N-TiO2 (5 wt% of nitrogen), respectively. The N-TiO2 utilized in water splitting experiments and evaluated hydrogen (H2) of 28 and 2 μmol/h for N-TiO2 and TiO2, respectively. The improvement may be attributed due to the N-doping and higher surface area as ∼70 m2/g.  相似文献   

15.
The Ba0.5Sr0.5Zn0.2Fe0.8O3−δ (BSZF) complex oxide with cubic perovskite structure was synthesized and examined as a new cobalt-free cathode for intermediate-temperature solid oxide fuel cells (IT-SOFCs). The electrical conductivity was relatively low with a peak value of 9.4 S cm−1 at about 590 °C, which was mainly caused by the high concentration of oxygen vacancy and the doping of bivalent zinc in B-sites. At 650 °C and under open circuit condition, symmetrical BSZF cathode on Sm-doped ceria (SDC) electrolyte showed polarization resistances (Rp) of 0.48 Ω cm2 and 0.35 Ω cm2 in air and oxygen, respectively. The dependence of Rp with oxygen partial pressure indicated that the rate-limiting step for oxygen reduction was oxygen adsorption/desorption kinetics. Using BSZF as the cathode, the wet hydrogen fueled Ni + SDC anode-supported single cell exhibited peak power densities of 392 mW cm−2 and 626 mW cm−2 at 650 °C when stationary air and oxygen flux were used as oxidants, respectively.  相似文献   

16.
The novel poly(vinyl alcohol)/titanium oxide (PVA/TiO2) composite polymer membrane was prepared using a solution casting method. The characteristic properties of the PVA/TiO2 composite polymer membrane were investigated by thermal gravimetric analysis (TGA), a scanning electron microscopy (SEM), a micro-Raman spectroscopy, a methanol permeability measurement and the AC impedance method. An alkaline direct alcohol (methanol, ethanol and isopropanol) fuel cell (DAFC), consisting of an air cathode based on MnO2/C inks, an anode based on PtRu (1:1) black and a PVA/TiO2 composite polymer membrane, was assembled and examined for the first time. The results indicate that the alkaline DAFC comprised of a cheap, non-perfluorinated PVA/TiO2 composite polymer membrane shows an improved electrochemical performances. The maximum power densities of alkaline DAFCs with 4 M KOH + 2 M CH3OH, 2 M C2H5OH and 2 M isopropanol (IPA) solutions at room temperature and ambient air are 9.25, 8.00, and 5.45 mW cm−2, respectively. As a result, methanol shows the highest maximum power density among three alcohols. The PVA/TiO2 composite polymer membrane with the permeability values in the order of 10−7 to 10−8 cm2 s−1 is a potential candidate for use on alkaline DAFCs.  相似文献   

17.
It is demonstrated for the first time that significant enhancement of photoelectrochemical performance could be achieved by using microwave-assisted annealing for the fabrication of α-Fe2O3 thin films. The process can also lead to significant energy savings (>60% when compared with conventional methods). Different types of Fe thin films were oxidized using both microwave and conventional heating techniques. The photoelectrochemical performance of electrodeposited, undoped and Si-doped iron oxide samples showed that microwave-annealing resulted in superior structural and performance enhancements. The photocurrent densities obtained from microwave annealed samples are among the highest values reported for α-Fe2O3 photoelectrodes fabricated at low temperatures and short times; the highest photocurrent density at 0.55 V vs. VAg/AgCl, before the dark current onset, was 450 μA cm−2 for the Si-doped films annealed at 270 °C for 15 min using microwave irradiation (and 180 μA cm−2 at 0.23 V vs. VAg/AgCl) while conventional annealing at the same temperature resulted in samples with negligible (3 μA cm−2) photoactivity. In contrast, a 450 °C/15 min conventional heat treatment only resulted in a film with 25% lower photocurrent density than that of the microwave annealed sample. The improved performance is attributed to the lower processing temperatures and rapidity of the microwave method that help to retain the nanostructure of the thin films whilst restricting the grain growth to a minimum. The lower processing temperature requirements of the microwave process can also open up the possibility of fabricating hematite thin films on conducting, flexible, plastic electronic substrates.  相似文献   

18.
A multiple electrophoretic deposition (EPD) of binder-free TiO2 photoanode has been developed to successfully fill the crack occurring after air-drying on the first EPD-TiO2 film surface. With the slow 2nd EPD, high quality TiO2 thin films are acquired on flexible ITO/PEN substrates at room temperature and the device efficiency of the dye-sensitized solar cell achieved 5.54% with a high fill factor of 0.721. Electrochemical impedance spectroscopy measurements analyze the great enhancement of the photovoltaic performance through multiple EPD. The electron diffusion coefficient improved by about 1 order of magnitude in crack-less multiple-EPD TiO2 films. With the scattering layer, the device reveals a high conversion efficiency of up to 6.63% under AM 1.5 G one sun irradiation, having a short circuit current density, open circuit voltage, and filling factor of 12.06 mA cm−2, 0.763 V and 0.72, respectively.  相似文献   

19.
Ultrathin hematite (α-Fe2O3) film deposited on a TiO2 underlayer as a photoanode for photoelectrochemical water splitting was described. The TiO2 underlayer was coated on conductive fluorine-doped tin oxide (FTO) glass by spin coating. The hematite films were formed layer-by-layer by repeating the separated two-phase hydrolysis-solvothermal reaction of iron(III) acetylacetonate and aqueous ammonia. A photocurrent density of 0.683 mA cm−2 at +1.5 V vs. RHE (reversible hydrogen electrode) was obtained under visible light (>420 nm, 100 mW cm−2) illumination. The TiO2 underlayer plays an important role in the formation of hematite film, acting as an intermediary to alleviate the dead layer effect and as a support of large surface areas to coat greater amounts of Fe2O3. The as-prepared photoanodes are notably stable and highly efficient for photoelectrochemical water splitting under visible light. This study provides a facile synthesis process for the controlled production of highly active ultrathin hematite film and a simple route for photocurrent enhancement using several photoanodes in tandem.  相似文献   

20.
The properties and performance of Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) + Sm0.2Ce0.8O1.9 (SDC) (70:30 in weight ratio) composite cathode for intermediate-temperature solid-oxide fuel cells were investigated. Mechanical mixing of BSCF with SDC resulted in the adhesion of fine SDC particles to the surface of coarse BSCF grains. XRD, SEM-EDX and O2-TPD results demonstrated that the phase reaction between BSCF and SDC was negligible, constricted only at the BSCF and SDC interface, and throughout the entire cathode with the formation of new (Ba,Sr,Sm,Ce)(Co,Fe)O3−δ perovskite phase at a firing temperature of 900, 1000, and ≥ 1050 °C, respectively. The BSCF + SDC electrode sintered at 1000 °C showed an area specific resistance of ∼0.064 Ω cm2 at 600 °C, which is a slight improvement over the BSCF (0.099 Ω cm2) owing to the enlarged cathode surface area contributed from the fine SDC particles. A peak power density of 1050 and ∼382 mW cm−2 was reached at 600 and 500 °C, respectively, for a thin-film electrolyte cell with the BSCF + SDC cathode fired from 1000 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号