首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous experimental studies on diesel engine have demonstrated the potential of exhaust gas recirculation (EGR) as an in‐cylinder NOx control method. Although an increase in EGR at constant boost pressure (substitution EGR) is accompanied with an increase in particulate matter (PM) emissions in the conventional diesel high‐temperature combustion (HTC), the recirculation of exhaust gases supplementary to air inlet gas (supplemental EGR) by increasing the boost pressure has been suggested as a way to reduce NOx emissions while limiting the negative impact of EGR on PM emissions. In the present work, a low‐pressure (LP) EGR loop is implemented on a standard 2.0 l automotive high‐speed direct injection (HSDI) turbocharged diesel engine to study the influence of high rates of supplemental cooled EGR on NOx and PM emissions. Contrary to initial high‐pressure (HP) EGR loop, the gas flow through the turbine is unchanged while varying the EGR rate. Thus, by closing the variable geometry turbine (VGT) vanes, higher boost pressure can be reached, allowing the use of high rates of supplemental EGR. Furthermore, recirculated exhaust gases are cooled under 50°C and water vapour is condensed and taken off from the recirculated gases. An increase in the boost pressure at a given inlet temperature and dilution ratio (DR) results in most cases an increase in NOx emissions and a decrease in PM emissions. The result of NOx–PM trade‐off, while varying the EGR rate at fixed inlet temperature and boost pressure depends on the operating point: it deteriorates at low load conditions, but improves at higher loads. Further improvement can be obtained by increasing the injection pressure. A decrease by approximately 50% of NOx emissions while maintaining PM emission level, and brake specific fuel consumption can be obtained with supplemental cooled EGR owing to an LP EGR loop, compared with the initial engine configuration (HP moderately cooled EGR). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
The effects of in-cylinder EGR stratification on combustion and emission characteristics are investigated in a single cylinder direct injection diesel engine. To achieve in-cylinder EGR stratification, external EGR rates of two intake ports are varied by supplying EGR asymmetrically using a separated intake runner. The EGR stratification pattern is improved using a 2-step bowl piston and an offset chamfer at the tangential intake port. When high EGR gas is supplied to the left (tangential) port, a high EGR region is formed at the central upper region of the combustion chamber. Consequently, combustion is initiated in the low EGR region, and PM is reduced significantly. When high EGR gas is supplied to the right (helical) port, a high EGR region is formed at the lower periphery of the combustion chamber. Therefore, combustion is initiated in the high EGR region, and NOx is reduced without PM penalty. Stratified EGR potentially reduces NOx by maximum 45%, without penalties of performance and other emissions. A proper in-cylinder swirl with stratified EGR maximizes the effects and achieves simultaneous reduction of NOx by 7% and PM by 23%. Moreover, the robustness of stratified EGR is evaluated under various operating conditions and injection strategies.  相似文献   

3.
Biodiesel is an alternative fuel consisting of the alkyl esters of fatty acids from vegetable oils or animal fats. Vegetable oils are produced from numerous oil seed crops (edible and non-edible), e.g., rapeseed oil, linseed oil, rice bran oil, soybean oil, etc. Research has shown that biodiesel-fueled engines produce less carbon monoxide (CO), unburned hydrocarbon (HC), and particulate emissions compared to mineral diesel fuel but higher NOx emissions. Exhaust gas recirculation (EGR) is effective to reduce NOx from diesel engines because it lowers the flame temperature and the oxygen concentration in the combustion chamber. However, EGR results in higher particulate matter (PM) emissions. Thus, the drawback of higher NOx emissions while using biodiesel may be overcome by employing EGR. The objective of current research work is to investigate the usage of biodiesel and EGR simultaneously in order to reduce the emissions of all regulated pollutants from diesel engines. A two-cylinder, air-cooled, constant speed direct injection diesel engine was used for experiments. HCs, NOx, CO, and opacity of the exhaust gas were measured to estimate the emissions. Various engine performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC), and brake specific energy consumption (BSEC), etc. were calculated from the acquired data. Application of EGR with biodiesel blends resulted in reductions in NOx emissions without any significant penalty in PM emissions or BSEC.  相似文献   

4.
To meet stringent vehicular exhaust emission norms worldwide, several exhaust pre-treatment and post-treatment techniques have been employed in modern engines. Exhaust Gas Recirculation (EGR) is a pre-treatment technique, which is being used widely to reduce and control the oxides of nitrogen (NOx) emission from diesel engines. EGR controls the NOx because it lowers oxygen concentration and flame temperature of the working fluid in the combustion chamber. However, the use of EGR leads to a trade-off in terms of soot emissions. Higher soot generated by EGR leads to long-term usage problems inside the engines such as higher carbon deposits, lubricating oil degradation and enhanced engine wear. Present experimental study has been carried out to investigate the effect of EGR on soot deposits, and wear of vital engine parts, especially piston rings, apart from performance and emissions in a two cylinder, air cooled, constant speed direct injection diesel engine, which is typically used in agricultural farm machinery and decentralized captive power generation. Such engines are normally not operated with EGR. The experiments were carried out to experimentally evaluate the performance and emissions for different EGR rates of the engine. Emissions of hydrocarbons (HC), NOx, carbon monoxide (CO), exhaust gas temperature, and smoke opacity of the exhaust gas etc. were measured. Performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC) were calculated. Reduction in NOx and exhaust gas temperature were observed but emissions of particulate matter (PM), HC, and CO were found to have increased with usage of EGR. The engine was operated for 96 h in normal running conditions and the deposits on vital engine parts were assessed. The engine was again operated for 96 h with EGR and similar observations were recorded. Higher carbon deposits were observed on the engine parts operating with EGR. Higher wear of piston rings was also observed for engine operated with EGR.  相似文献   

5.
In Homogeneous Charge Compression Ignition (HCCI) combustion, a lean premixed charge combusts simultaneously in multiple sites. Utilizing highly diluted mixtures, and lack of any significant flame propagation, in-cylinder NOx formation is reduced. Making HCCI engine a feasible alternative to conventional engines requires several challenges to be resolved. Combustion timing control is one of the most important of these items. It should be done in order that heat is released at the most optimum phasing for efficiency and emissions. In this study, a Waukesha Cooperative Fuel Research (CFR) single cylinder research engine was used to be operated in HCCI combustion mode fueled by natural gas and n-heptane. The main goal of the experiments was to investigate the possibility of controlling combustion phasing and combustion duration using various Exhaust Gas Recirculation (EGR) fractions. For the analysis of the results, a modified apparent heat release model was developed. The influence of EGR on emissions was discussed. Results indicate that applying EGR reduces mean charge temperature and has profound effect on combustion phasing, leading to a retarded Start of Combustion (SOC) and prolonged burn duration. Heat transfer rate decreases with EGR addition. Under examined condition EGR addition improved fuel economy, reduced NOx emissions and increased HC and CO emissions.  相似文献   

6.
Homogeneous charge compression ignition (HCCI) combustion mode provides very low NOx and soot emissions; however, it has some challenges associated with hydrocarbon (HC) emissions, fuel consumption, difficult control of start of ignition and bad behaviour to high loads. Cooled exhaust gas recirculation (EGR) is a common way to control in-cylinder NOx production in diesel and HCCI combustion mode. However EGR has different effects on combustion and emissions, which are difficult to distinguish. This work is intended to characterize an engine that has been modified from the base diesel engine (FL1 906 DEUTZ-DITER) to work in HCCI combustion mode. It shows the experimental results for the modified diesel engine in HCCI combustion mode fueled with commercial diesel fuel compared to the diesel engine mode. An experimental installation, in conjunction with systematic tests to determine the optimum crank angle of fuel injection, has been used to measure the evolution of the cylinder pressure and to get an estimate of the heat release rate from a single-zone numerical model. From these the angle of start of combustion has been obtained. The performances and emissions of HC, CO and the huge reduction of NOx and smoke emissions of the engine are presented. These results have allowed a deeper analysis of the effects of external EGR on the HCCI operation mode, on some engine design parameters and also on NOx emission reduction.  相似文献   

7.
李澍冉  王大为  石磊  邓康耀  桂勇 《柴油机》2018,40(4):1-6, 24
以某型6缸低速二冲程柴油机为研究对象,建立GT-POWER一维仿真模型,研究高、低压EGR系统对柴油机性能及排放的影响。研究结果表明:随着EGR率的上升,高压EGR系统中压气机运行点从中心高效区向低效区和流量减小的方向移动,而低压EGR系统的流量和压比变化较小;高压EGR系统缸内压力始终低于低压EGR系统,在低负荷时,导致燃烧速度和放热率峰值低于低压EGR系统;燃油消耗率随着EGR率的增加呈上升趋势,当EGR率增加到一定程度时燃油消耗率上升更明显,并且高压EGR系统燃油消耗率明显高于低压EGR;两种EGR系统都能降低NO_x排放,但相同EGR率时,高压EGR系统NO_x减排效果更好。  相似文献   

8.
The influence of cylinder-to-cylinder variation in EGR distribution on the NOx–PM trade-off (while varying EGR rate) is studied on an automotive high-speed direct injection Diesel engine. Experiments have been conducted on an engine test bench with and without air-EGR mixer and demonstrate that variations in cylinder-to-cylinder EGR distribution results in a deteriorated NOx–PM trade-off (increased NOx emissions level at a given PM emissions level, or increased PM emissions level at a given NOx emissions level) compared to the well mixed configuration with equal EGR rate for all the cylinders. A qualitative study as well an original experiment is conducted to explain this emissions increase induced by unequal distribution of EGR. When recirculating hot exhaust gases, the emissions increase is due to cylinder-to-cylinder variations in intake gas composition and temperature.  相似文献   

9.
Research suggests that there is a dramatic reduction in CO and particulate matter (PM) emissions when butanol is blended with biodiesel derived from rapeseed oil (RME), but a small increase in THC emissions. The addition of hydrogen as a combustion enhancer can be used to counteract the increase in THC emissions seen with the butanol fuel blends and further reduce CO and PM emissions. The emission benefits with hydrogen addition were shown to be further improved for RME-butanol fuel blends. The penalty for using hydrogen is an increase in NOx emissions due to the increase in NO2 formation during combustion, but this is expected to have significant benefits in the function of aftertreatment systems. In this study, it is shown that the increase in engine-out NOx emissions can be effectively controlled through exhaust gas recirculation (EGR) without an excessive PM penalty thanks to the low PM concentration in the EGR (with an impeding PM recirculation penalty).  相似文献   

10.
The effects of biodiesel (rapeseed methyl ester, RME) and different diesel/RME blends on the diesel engine NOx emissions, smoke, fuel consumption, engine efficiency, cylinder pressure and net heat release rate are analysed and presented. The combustion of RME as pure fuel or blended with diesel in an unmodified engine results in advanced combustion, reduced ignition delay and increased heat release rate in the initial uncontrolled premixed combustion phase. The increased in-cylinder pressure and temperature lead to increased NOx emissions while the more advanced combustion assists in the reduction of smoke compared to pure diesel combustion. The lower calorific value of RME results in increased fuel consumption but the engine thermal efficiency is not affected significantly. When similar percentages (% by volume) of exhaust gas recirculation (EGR) are used in the cases of diesel and RME, NOx emissions are reduced to similar values, but the smoke emissions are significantly lower in the case of RME. The retardation of the injection timing in the case of pure RME and 50/50 (by volume) blend with diesel results in further reduction of NOx at a cost of small increases of smoke and fuel consumption.  相似文献   

11.
The distinctive properties of hydrogen have initiated considerable applied research related to the internal combustion engine. Recently, it has been reported that NOx emissions were reduced by using hydrogen in a diesel engine at low temperature and heavy EGR conditions. As the continuing study, cylinder pressure was also investigated to determine the combustion characteristics and their relationship to NOx emissions. The test engine was operated at constant speed and fixed diesel fuel injection rate (1500 rpm, 2.5 kg/h). Diesel fuel was injected in a split pattern into a 2-L diesel engine. The cylinder pressure was measured for different hydrogen flow rates and EGR ratios. The intake manifold temperature was controlled to be the same to avoid the gas intake temperature variations under the widely differing levels (2%-31%) of EGR. The measured cylinder pressure was analyzed for characteristic combustion values, such as mass burn fraction and combustion duration.The rising crank angle of the heat release rate was unaffected by the presence of hydrogen. However, supplying hydrogen extended the main combustion duration. This longer main combustion duration was particularly noticeable at the heavy EGR condition. It correlated well with the reduced NOx emissions.  相似文献   

12.
DI diesel engines are well established today as the main powertrain solution for trucks and other relevant heavy duty vehicles. At the same time emission legislation (mainly for NOx and particulate matter) becomes stricter, reducing their limit to extremely low values. One efficient method to control NOx in order to achieve future emissions limits is the use of rather high exhaust gas recirculation (EGR) rates accompanied by increased boost pressure to avoid the negative impact on soot emissions. The method is based on the reduction of gas temperature level and O2 availability inside the combustion chamber, but unfortunately it has usually an adverse effect on soot emissions and brake specific fuel consumption (bsfc). The use of high EGR rates creates the need for EGR gas cooling in order to minimize its negative impact on soot emissions especially at high engine load were the EGR flow rate and exhaust temperature are high. For this reason in the present paper it is examined, using a multi-zone combustion model, the effect of cooled EGR gas temperature level for various EGR percentages on performance and emissions of a turbocharged DI heavy duty diesel engine operating at full load. Results reveal that the decrease of EGR gas temperature has a positive effect on bsfc, soot (lower values) while it has only a small positive effect on NO. As revealed, the effect of low EGR temperature is stronger at high EGR rates.  相似文献   

13.
In this study, we examined H2 effects on the combustion and emissions of a diesel engine with low-pressure loop (LPL) exhaust gas recirculation (EGR). We converted a 2.2-L four-cylinder direct-injection diesel engine satisfying Euro5 for H2 supply. An LPL-EGR system replaced the high-pressure loop (HPL) EGR system. For all tests, the brake mean effective pressure (BMEP) was kept at 4 bar and the EGR ratio was varied from 9 to 42%. The H2 energy percentage was varied from 0 to 7.4% independently to evaluate the H2 effects and EGR effects separately. The heat release rate was calculated from the measured cylinder pressure. We found that substitution of H2 for diesel fuel made the premixed burn fraction larger, and reduced the nitrous oxide (NOx) and particulate matter (PM) emissions simultaneously. For example, the NOx emissions were reduced by 36% for an EGR of 42% and an H2 percentage of 7.4%. PM emissions were reduced by 18% for an EGR of 35% and an H2 percentage of 7.4% compared with diesel fuel only cases.  相似文献   

14.
A naturally aspirated spark ignition (SI) engine fueled by hydrogen-blended low calorific gas (LCG) was tested in both exhaust gas recirculation (EGR) and lean burn modes. The “dilution ratio” was introduced to compare their effects on engine performance and emissions under identical levels of dilution. LCG composed of 40% natural gas and 60% nitrogen was used as a main fuel, and hydrogen was blended with the LCG in volumes ranging from 0 to 20%. The engine test results demonstrated that EGR operations at stoichiometry showed a narrower dilution range, inferior combustion characteristics, lower brake thermal efficiency, faster nitrogen oxides (NOx) suppression, and higher total hydrocarbon (THC) emissions for all hydrogen blending rates compared to lean burn. These trends were mainly due to the increased oxygen deficiency as a result of using EGR in LCG/air mixtures. Hydrogen enrichment of the LCG improved combustion stability and reduced THC emissions while increasing NOx. In terms of efficiency, hydrogen addition induced a competition between combustion enhancement and increases in the cooling loss, so that the peak thermal efficiency occurred at 10% H2 with excess air ratio of 1.5. The engine test results also indicated that a close-to-linear NOx-efficiency relationship occurred for all hydrogen blending rates in both operations as long as stable combustion was achieved. NOx versus combustion duration analysis showed that adding H2 reduced combustion duration while maintaining the same level of NOx. The methane fraction contained in the THC emissions decreased slightly with an increase in hydrogen enrichment at low EGR or excess air dilution ratios, but this tendency was diminished at higher dilution ratios because of the combined dilution effects from the inert gas in the LCG and the diluents (EGR or excess air).  相似文献   

15.
An experimental investigation has been performed on the modification of in-cylinder gas thermodynamic conditions by advancing the intake valve closing angle in a HD diesel engine. The consequences on the diffusion-controlled combustion process have been analysed in detail, including the evolution of exhaust emissions and engine efficiency. This research has been carried out at full load (100%) and low engine speed (1200 rpm) with the aim of generating a long and stable diffusion-controlled combustion process. The intake oxygen mass concentration was kept at 17.4% to obtain low NOx levels in all cases. The required flexibility on intake valve motion has been attained by means of an electro-hydraulic variable valve actuation system. The results obtained from advancing the intake valve closing angle (IVC) have shown an important reduction on in-cylinder gas pressure and density, whereas the gas temperature showed less sensitivity. Consequently, the diffusion-controlled combustion process is slowed down mainly due to the lower in-cylinder gas density and oxygen availability. Important effects of advancing IVC have also been observed on pollutant emissions and engine efficiency. Where NOx production decreases, soot emissions increase. Finally, the results of pollutant emissions and engine efficiency have been compared with those obtained retarding the start of injection.  相似文献   

16.
Biofuels extracted from non-edible oil is sustainable and can be used as an alternative fuel for internal combustion engines. This study presents the performance, emission and combustion characteristic analysis by using simarouba oil (obtained from Simarouba seed) as an alternative fuel along with hydrogen and exhaust gas recirculation (EGR) in a compression ignition (CI) engine operating on dual fuel mode. Simarouba biofuel blend (B20) was prepared on volumetric basis by mixing simarouba oil and diesel in the proportion of 20% and 80% (v/v), respectively. Hydrogen gas was introduced at the flow rate of 2.67 kg/min, and EGR concentration was maintained at 30% of total air introduction. Performance, combustion and emission characteristics analysis were examined with biodiesel (B20), biodiesel with hydrogen substitution and biodiesel, hydrogen with EGR and were compared with neat diesel operation. Results indicate that BTE of the engine operating with biodiesel B20 was decreased when compared to neat diesel operation. However, introducing hydrogen along with B20 blend into the combustion chamber shows a slight increase in the BTE by 1%. NOx emission was increased to 18.13% with the introduction of hydrogen than that of base fuel (diesel) operation. With the introduction of EGR, there is a significant reduction in NOx emission due to decrease in in-cylinder temperature by 19.07%. A significant reduction in CO, CO2, and smoke emissions were also noted with the introduction of both hydrogen and EGR. The ignition delay and combustion duration were increased with the introduction of hydrogen, EGR with biodiesel than neat diesel operation. Hence, the proposed biodiesel B20 with H2 and EGR combination can be applied as an alternative fuel in CI engines.  相似文献   

17.
《能源学会志》2014,87(2):102-113
In this study, combustion and emissions characteristics of a turbocharged compression ignition engine fueled with dimethyl ether (DME) and biodiesel blends are experimentally investigated. The effects of nozzle parameter on combustion and emissions are evaluated. The result shows that with the increase of DME proportion, ignition delay, the peak in-cylinder pressure, peak heat-release rate, peak in-cylinder temperature decrease, and their phases retard. Compared to the nozzle 6 × 0.40 mm, the peak cylinder pressure and peak heat-release rate are higher with nozzle 6 × 0.35 mm, and their phases are advanced. Increased DME proportion in fuel blends causes greater differences. Compared to biodiesel, NOx emissions of blends significantly decrease; HC emissions and CO emissions increase slightly. DME–biodiesel blends can be used as an alternative in a turbocharged CI engine. To obtain low NOx emissions and a soft engine operation, for high DME proportion blended fuels, nozzle of 6 × 0.40 mm adopted.  相似文献   

18.
In this study a state of the art passenger car natural gas engine was optimised for hydrogen natural gas mixtures and high exhaust gas recirculation (EGR) rates in the part load domain. With optimal combinations of spark timing (ST) and EGR rate the achievements are significant efficiency increase with substantially lower engine-out NOxNOx while total unburned hydrocarbons or CO-engine-out emissions are not affected. Comprehensive investigations of the parameter space using design of experiments (DoE) algorithms provided a complete picture of the potential of such applications. Combustion analysis on the other hand allowed to identify improvements on the basis of accelerated combustion caused by the hydrogen as well as the reduced gas exchange losses due to EGR and associated less required throttling for a given engine output. The best combinations of EGR rate, hydrogen-fraction in the fuel and ST exhibited optimal in-cylinder pressure characteristics accompanied by moderate combustion peak temperatures and low expansion cylinder temperatures.  相似文献   

19.
Homogeneous Charge Compression Ignition (HCCI) combustion is a combustion concept which offers simultaneous reductions in both NOx and soot emissions from internal combustion engines. In light of increasingly stringent diesel emissions limits, research efforts have been invested into HCCI combustion as an alternative to conventional diesel combustion. This paper reviews the implementation of HCCI combustion in direct injection diesel engines using early, multiple and late injection strategies. Governing factors in HCCI operations such as injector characteristics, injection pressure, piston bowl geometry, compression ratio, intake charge temperature, exhaust gas recirculation (EGR) and supercharging or turbocharging are discussed in this review. The effects of design and operating parameters on HCCI diesel emissions, particularly NOx and soot, are also investigated. For each of these parameters, the theories are discussed in conjunction with comparative evaluation of studies reported in the specialised literature.  相似文献   

20.
In this study, a survey of research papers on utilization of natural gas–hydrogen mixtures in internal combustion engines is carried out. In general, HC, CO2, and CO emissions decrease with increasing H2, but NOx emissions generally increase. If a catalytic converter is used, NOx emission values can be decreased to extremely low levels. Consequently, equivalence zero emission vehicles (EZEV) standards may be reached. Efficiency values vary with H2 amount, spark timing, compression ratio, equivalence ratio, etc. Under certain conditions, efficiency values can be increased. In terms of BSFC, emissions and BTE, a mixture of low hydrogen percentage is suitable for using.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号