首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combining solar energy and heat pump technology is a very attractive concept. It is able to eliminate some difficulties and disadvantages of using solar dryer systems or solely using heat pump drying separately. Solar assisted heat pump drying systems have been studied and applied since the last decades in order to increase the quality of products where low temperature and well-controlled drying conditions are needed. This paper reviewed studies on the advances in solar heat pump drying systems. Results and observation from the studies of solar assisted heat pump dryer systems indicated that for heat sensitive materials; improved quality control, reduced energy consumption, high coefficient of performance and high thermal efficiency of the dryer were achieved. The way forward and future directions in R&D in this field are further research regarding theoretical and experimental analysis as well as for the replacement of conventional solar dryer or heat pump dryer with solar assisted heat pump drying systems and solar assisted chemical and ground source heat pump dryers which should present energy efficient applications of the technologies.  相似文献   

2.
In this study, a new solar power assisted multigeneration system designed and thermodynamically analyzed. In this system, it is designed to perform heating, cooling, drying, hydrogen and power generation with a single energy input. The proposed study consists of seven sub-parts which are namely parabolic dish solar collector, Rankine cycle, organic Rankine cycle, PEM-electrolyzer, double effect absorption cooling, dryer and heat pump. The effects of varying reference temperature, solar irradiation, input and output pressure of high-pressure turbine and pinch point temperature heat recovery steam generator are investigated on the energetic and exergetic performance of integration system. Thermodynamic analysis result outputs show that the energy and exergy performance of overall study are computed as 48.19% and 43.57%, respectively. Moreover, the highest rate of irreversibility has the parabolic dish collector with 24,750 kW, while the lowest rate of irreversibility is calculated as 5745 kW in dryer. In addition, the main contribution of this study is that the solar-assisted multi-generation systems have good potential in terms of energy and exergy efficiency.  相似文献   

3.
A comparative analysis is presented of a novel plate‐type isothermal heat pump dryer and a conventional adiabatic heat pump dryer. The energy performance and drying capacity of each dryer type is investigated subject to operational constraints on the maximum acceptable relative humidity and temperature of air passing over the product. The analysis demonstrates that for applicable products, a significant opportunity exists for improving the energy efficiency of heat pump drying, by a factor of 2–3 times compared with current adiabatic heat pump dryers. The moisture extraction rate is also increased in the contact heat pump dryer, by a similar factor. However, these improvements are shown to be sensitive both to the impact of product thickness on heat transfer and to the relative humidity constraint. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents and evaluates methods of improvement of energy utilization and reduction of energy cost in conventional unpeeled longan drying. Existing dryers were modified into a new dryer arrangement. Performance in terms of specific energy utilization, thermal efficiency and operating cost indices for both traditional and new designs was evaluated. Results showed that the modified dryer yielded an average thermal efficiency of 0.35, compared to 0.29 for the existing dryer. For the same mass of dried longan produced, specific energy utilization and fuel cost were reduced by more than 16% and 80%, respectively. The improvement was attributed to fuel switching from liquefied petroleum gas to wood, heat recovery via hot air recirculation, better temperature and humidity control, and thermal insulation. The new dryer with improved design and better energy efficiency was estimated to have payback period less than 3 years.  相似文献   

5.
Drying is one of the most energy intensive and common operations in the chemical and process industries. Scope for energy recovery is substantial, particularly from the latent heat of the exhaust moist air. Using real operating data from a major Swedish mill, optimal energy conservation strategies were investigated using different heat pump systems in paper drying. Simulation results are compared for compressor-driven and absorption heat pump systems. An absorption heat transformer was also investigated. A CH3OH–LiBr double-lift cycle would have a low COP value due to the low temperature of the moist air stream and the restricted temperature of the cooling water available. A total of 30 MW thermal equivalent is currently needed in the mill at a temperature of 75°C for mixing-pits, district heating and a log store. Exhaust humid air at a temperature of 54°C from only three of the paper machines was used in this study. SHPUMP simulations revealed that installing a mechanical heat pump unit using HFC 134a would result in a recovery of 22 MW due to the temperature level of this application. On the other hand, 12 MW can be recovered with an absorption heat pump. To optimize the operating conditions, H2O–NaOH was selected as the best of three based on exergy index criteria. Assuming a steam cost of 22 $/MW h and an electricity cost of 32 $/MW h, the pay-off periods would be 3·3 and 2·9 years for compressor-driven and absorption heat pump alternatives, respectively. © 1997 by John Wiley & Sons, Ltd.  相似文献   

6.
With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10 MW peaking/backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5 MW base‐load system. The energy options for the base‐load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25‐year service life of the systems, considering tax savings due to depreciation and operating costs, and salvage value of equipment and building and resale price of land in the cash flow analysis. It was shown that the natural gas boiler option provided less expensive energy followed by the wood pellet heat producing technologies, sewer heat recovery, and geothermal heat pump. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for 37% of the heat production cost for the considered district‐heating center. The results show that the cost of produced heat from wood pellet grate burner is well comparable to that of the natural gas boiler. Emissions of the systems are also calculated in this study. It is shown that the natural gas boiler for the base‐load heat production would produce more than 4300 tonnes of GHG emission per year, while wood pellet burning systems are GHG neutral. Sensitivity analysis on various inputs to the economic model has been carried out. It was shown that 20% increase in capital cost of the natural gas base‐load system or 1% decrease in wood pellet price inflation would make the wood pellet grate burner economically preferable to the natural gas boiler. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
《Biomass & bioenergy》2006,30(5):452-460
Sawmills produce side products that cannot be used in the pulp industry. They can, however, be used as fuel in the sawmill or elsewhere. Mass and energy flows in a sawmill are studied, using data from a Swedish sawmill. Design parameters are calculated for the dewatering and boiler capacities when a wood fuel dryer is coupled to the wood product dryer in the sawmill. The energy used for evaporation in the wood fuel dryer is used in the drying kilns. The useful work potential (exergy) is used to measure the quality improvements of the energy resource when a coupled wood fuel dryer is installed.Two pairs of cases are defined and studied. The first pair only involves material from the sawmill. In the second pair, wood residues are added until the wood fuel dryer uses the full heat demand from the drying kilns. The heat demand from the drying kilns is sufficient as a heat sink for a wood fueldryer for drying all the side products from a sawmill even if the bark is dried and the sawmill produces large amounts of side products. The sawmills have the potential to play a leading role in the market for processed wood fuel. To install coupled dryers in the way that is suggested here into sawmills is a good example of how to use the limited wood fuel resources efficiently.  相似文献   

8.
This research is concerned with the technology of heat pump assisted drying of specialty crops. A simplified procedure for modelling the performance of a low temperature heat pump dryer was developed. The system modelled consists of a vapour compression heat pump coupled to a continuous cross flow bed dryer. The model takes into account the detailed heat and mass transfer phenomena taking place in the heat pump and dryer circuits. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
The experimental and predicted performance data of a heat pump dryer system is reported. Chopped alfalfa was dried in a cabinet dryer in batches and also by emulating continuous bed drying using two heat pumps operating in parallel. Results showed that alfalfa was dried from an initial moisture content of 70% (wb) to a final moisture content of 10% (wb). The batch drying took about 4.5 h while continuous bed drying took 4 h to dry the same amount of material. The average air velocity inside the dryer was 0.36 m s?1. Low temperatures (30–45°C) for safe drying of specialty crops were achieved experimentally. The heat pump drying system used in this study was about 50% more efficient in recovering the latent heat from the dryer exhaust compared to the conventional dryers. Specific moisture extraction rate (SMER) was maximum when relative humidity stayed above 40%. The dryer was shown to be capable of SMER of between 0.5 and 1.02 kg kW?1 h?1. It was concluded that continuous bed drying is potentially a better option than batch drying because high process air humidity ratios at the entrance of the evaporator and constant moisture extraction rate and specific moisture extraction rate values can be maintained. An uncertainty analysis confirmed the accuracy of the model. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Abstract

In this paper, a parametric analysis of two solar heating and cooling systems, one using an absorption heat pump and the other one using an adsorption heat pump, was performed. The systems under investigation were designed to satisfy the energy requirements of a residential building for space heating/cooling purposes and domestic hot water production. The system with the absorption heat pump was analyzed upon varying (i) the solar collectors’ area, (ii) the volume of the hot water storage, (iii) the volume of the cold water tank, and (iv) the climatic conditions. The system with the adsorption heat pump was evaluated upon varying (i) the inlet temperature of hot water supplied to the adsorption heat pump, (ii) the volume of the hot water storage, (iii) the volume of the cold water tank, and (iv) the climatic conditions. The analyses were performed using the dynamic simulation software TRNSYS in terms of primary energy consumption, global carbon dioxide equivalent emissions, and operating costs. The performance of the solar heating and cooling systems was compared with those associated with a conventional system from energy, environmental and economic points of views in order to evaluate the potential benefits.  相似文献   

11.
Drying is an energy intensive and time consuming process, so reducing amount of demanded energy and drying time are important issues for drying technology. The main aim of this paper is to analyze the drying characteristics of mint leaves in a new cylindrical form of drying chamber at low drying air temperature and by emphasizing on energy analysis. The dryer consists of air source heat pump system, air to air heat recovery unit and proportional temperature controller. Experiments were performed at 2, 2.5 and 3 m/s air velocities and at 35 °C cabin inlet air temperature. Mint leaves were dried from 9 g water/g dry matter to 0.1 g water/g dry matter. Designed drying chamber, with three stainless steel cylinders in circular nested form, has a positive effect for drying technology. This system has some advantages such as: drying of product by accessing a uniform air flow and preventing spread of light weight samples like mint leaves over drying system. Calculations based on experimental data show that in the best case, by consuming 3.164 kWh energy in a heat pump with 3.94 coefficients of performance, 4.56 kWh energy had been gained by heat recovery unit. Average 48% of energy was saved by means of heat recovery unit. Effective moisture diffusivity values varied from 3.50E?11 to 5.88E?11 for mint leaves.  相似文献   

12.
We describe an approach using the contact factor (CF) as the dryer performance and design parameter. The CF is calculated using known drying variables with a view to minimizing the drying costs. An algorithm to obtain the ‘economic’ CF for drying is presented. Besides being a design parameter of single‐stage dryers, the CF is a useful parameter in determining the schedule of cascade dryers in multi‐stage drying. We demonstrate the dryer component selection process using a set of design charts for heat pump dryers. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

13.
In this experimental study, a proportional integral derivative (PID) controlled heat pump dryer was designed and manufactured. Heat pump dryer was tested drying of hazelnut and energy analyses were made. Drying air temperatures were changed as 50,45 and 40°C in the drying system. Drying air velocities were changed as 0.25 m s?1 for 50°C, 0.32 m s?1 for 45°C and 0.38 m s?1 for 40°C. Heating coefficient of performance of whole system (COPws) of the heat pump dryer was calculated as 1.70 for 50°C, 1.58 for 45°C and 1.40 for 40°C drying air temperatures. Energy utilization ratio changed between 24 and 65% for 50°C, 17 and 63% for 45°C and 14 and 43% for 40°C drying air temperatures in the heat pump dryer. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
《Energy》2006,31(14):2588-2603
The subject hereof are two typical examples of waste heat and low-temperature heat use and the objective is to evaluate economic effectiveness taking into account various boundary conditions. The first facility considered is an “earth-coupled” heat pump with direct evaporation used as a component of a heating system. The second is an industrial installation, based on a specific project to use waste heat from the cooling process. Alternatively, four different technical options have been considered, including the use of the compression heat pump, absorption heat pump, heat transformer (absorption) and combined system with a gas motor for driving the heat pump compressor. An original simple methodology for economic analysis evaluating uses of low-temperature heat sources as elements of energy supply systems has been developed using input data taken from actual research or industrial projects. The paper also offers a comparison between such energy supply systems operating under different economic conditions of Germany and Poland.  相似文献   

15.
Experiments are described in which several different types of cycles and dryers are compared, and it is shown that the best performance, in terms of both drying time and energy saving, is achieved by a recirculating cycle with a hybrid dryer with a heat pump dehumidifier and supplementary resistance heating.  相似文献   

16.
The performance of a dehumidifier dryer is influenced strongly by the operating temperature and humidity. This paper shows how heat conduction and air leakage losses can cause the temperature of a dehumidifier kiln to collapse in a batch drying process, resulting in increased drying time and energy use. By means of a dynamic simulation model it is shown that heat loss due to an uninsulated floor alone may be sufficient to prevent a kiln reaching its normal operating temperature. It is shown that the effect of heat losses is exacerbated when the dehumidifier capacity is modulated for humidity control. Auxiliary heating can prevent temperature collapse in a poorly insulated kiln. This maintains the drying speed but adds considerably to the energy used. To avoid these difficulties the insulation and air seals of a dehumidifier dryer should be appropriate to the power dissipated by the dehumidifier and fans. An example is presented in which sealing and insulating the kiln yields a reduction of 44 per cent in the drying time, a reduction of 32 per cent in energy use, and an increase of 168 per cent in net operating revenue. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
Performance analysis of solar-assisted chemical heat-pump dryer   总被引:1,自引:0,他引:1  
M.I. Fadhel  K. Sopian 《Solar Energy》2010,84(11):1920-1928
A solar-assisted chemical heat-pump dryer has been designed, fabricated and tested. The performance of the system has been studied under the meteorological conditions of Malaysia. The system consists of four main components: solar collector (evacuated tubes type), storage tank, solid-gas chemical heat pump unit and dryer chamber. A solid-gas chemical heat pump unit consists of reactor, condenser and evaporator. The reaction used in this study (CaCl2-NH3). A simulation has been developed, and the predicted results are compared with those obtained from experiments. The maximum efficiency for evacuated tubes solar collector of 80% has been predicted against the maximum experiment of 74%. The maximum values of solar fraction from the simulation and experiment are 0.795 and 0.713, respectively, whereas the coefficient of performance of chemical heat pump (COPh) maximum values 2.2 and 2 are obtained from simulation and experiments, respectively. The results show that any reduction of energy at condenser as a result of the decrease in solar radiation will decrease the coefficient of performance of chemical heat pump as well as decrease the efficiency of drying.  相似文献   

18.
Drying is one of the most energy intensive unit operations. In many applications the drying temperatures required are low enough to make the inclusion of a heat pump in the system worthy of consideration. Five drying/dehumidification systems, including three with heat pumps, have been compared theoretically on the basis of specific power consumption (SPC), (i.e. the energy supplied per unit of moisture condensed) and primary energy consumption (PEC) which is (SPC) divided by the efficiency of primary energy conversion. The efficiency of each system is improved as the relative humidity of the air leaving the dryer is increased. The optimum is, however, very flat and a heat pump should be advantageous when a minimum relative humidity of 30 per cent is acceptable within the drying chamber. A closed cycle dryer is shown to be the most advantageous but requires careful matching.  相似文献   

19.
A heat pump dryer (HPD) would be an economic, environmentally friendly, hygienic drying machine used to dry some food, such as hawthorn cakes. Based on the production process of the hawthorn cake, a HPD is proposed and its basic principle is introduced. The experimental drying curves of the hawthorn cake using the heat pump drying method and the traditional hot air drying method are compared and analyzed. The drying process of hawthorn cakes is similar to that of the other drying materials. The higher drying temperature causes a faster drying process. But in the initial stage of the heat pump drying process, the water content of the hawthorn cake is not sensitive to the drying temperature, so a lower drying air temperature can be available in order to get a higher coefficient of performance (COP) of the heat pump (HP). The experimental results and the economic analysis indicate that the HPD is feasibly used to dry hawthorn cakes.  相似文献   

20.
The artificial neural network (ANN) approach is generic technique for mapping non-linear relationships between inputs and outputs without knowing the details of these relationships. In this paper, an application of the ANN has been presented for a PID controlled heat pump dryer. In PID controlled heat pump dryer, air velocity changed according to the temperature value which is set in process control device. Heat pump dryer was tested drying of hazelnut at 40 °C, 45 °C and 50 °C drying air temperatures. By training the experiment results with ANN, drying air velocities, moisture content of hazelnuts and total drying time were predicted for 42 °C, 44 °C, 46 °C and 48 °C drying air temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号