首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
柱肋作为一种冷却通道内的强化换热技术,对提高层板结构的冷却效率有着重要意义。为了研究柱肋对双层板结构冷却性能和流场的影响,数值模拟研究了柱肋高径比分别为1,0.6,0.2,吹风比分别为0.3,0.6,1.0,1.5的原模型和等比例放大5倍模型两种尺度层板冷却结构的冷却效率。结果表明:高径比的变化对原模型冷却效率的影响更加明显,对放大模型的冷却效率影响非常小;吹风比越大,高径比对冷却效率的影响越明显,吹风比从0.3增大到1.5,高径比为0.6的柱肋比高径比为1柱肋的综合冷却效率提高了2%~3%;高径比为0.6的柱肋具有最大的相对压力损失,高径比为0.2和1柱肋的相对应力损失比高径比为0.6时低0.01%~0.07%。  相似文献   

2.
Disc cooling problem is optimized by taking entransy dissipation rate minimization as optimization objective. The non-dimensional mean temperature difference of the disc cooling model with radial high conducting fins inserted is deduced. The effects of the fin geometry, the fin aspect ratio, the ratio between the high conductivity and low conductivity, the relative amount of high conductivity material and the number of high conducting fins on the entransy dissipation rate of disc cooling are analyzed. The optimization results show that the high conducting fin should be extended to the centre of circle as the heat transfer effect of the high conducting fins is improved, and there exists an optimal fin aspect ratio corresponding to minimum entransy dissipation rate for different high conducting effects of the fin, and the number of high conducting fins has a slight effect on the entransy dissipation rate. Comparison with those for maximum temperature difference minimization shows that the constructs based on entransy dissipation rate minimization are different from those based on maximum temperature difference minimization, but the optimal constructal shape changing potentials of the number of fins and the relative amount of high conductivity material are similar.  相似文献   

3.
A stand-alone triple basin solar desalination system is experimentally tested and the results are discussed in this paper. This system mainly consists of a triple basin glass solar still (TBSS), cover cooling (CC) arrangement, parabolic dish concentrator (PDC) and photovoltaic (PV) panel. Four triangular hollow fins are attached at the bottom of the upper and middle basin in order to increase the heat transfer rate and place the energy storing materials. The performance of the system is studied by, conventional TBSS system, integrating the TBSS with CC, TBSS with PDC, and TBSS with CC and PDC. Also, each configuration is tested further by using fins without energy storing material, fins filled with river sand, and fins filled with charcoal. The results of the test reveal that, TBSS with charcoal and TBSS with river sand enhance the distillate by 34.2 and 25.6% higher than conventional TBSS distillates. TBSS with cover cooling reduces the glass temperature to about 8 °C compared to the conventional TBSS. The presence of concentrator increases the lower basin water temperature upto 85 °C. The maximum distillate yield of 16.94 kg/m2.day is obtained for TBSS with concentrator, cover cooling and charcoal in fins.  相似文献   

4.
In the present study, compact water cooling of high‐density, high‐speed, very‐large‐scale integrated (VLSI) circuits with the help of microchannel heat exchangers were investigated analytically. This study also presents the result of mathematical analysis based on the modified Bessel function of laminar fluid flow and heat transfer through combined conduction and convection in a microchannel heat sink with triangular extensions. The main purpose of this paper is to find the dimensions of a heat sink that give the least thermal resistance between the fluid and the heat sink, and the results are compared with that of rectangular fins. It is seen that the triangular heat sink requires less substrate material as compared to rectangular fins, and the heat transfer rate per unit volume has been almost doubled by using triangular heat sinks. It is also found that the effectiveness of the triangular fin is higher than that of the rectangular fin. Therefore, the triangular heat sink has the ability to dissipate large amounts of heat with relatively less temperature rise for the same fin volume. Alternatively, triangular heat sinks may thus be more cost effective to use for cooling ultra‐high speed VLSI circuits than rectangular heat sinks.  相似文献   

5.
The present study focuses on the entropy generation analysis in a circular duct with internal longitudinal fins of different shape for laminar flow. Three different fin shapes are chosen for the analysis: Thin, triangular and V-shaped fins. Calculations are performed for various dimensionless lengths and number of fins, dimensionless temperature difference and fin angle for triangular and V-shaped fins. It is found that the number of fins and dimensionless length of the fins for both thin fins and triangular fins, and the fin angle for triangular and V-shaped fins have significant effect on both entropy generation and pumping power. Further, both entropy generation and pumping power also are influenced by dimensionless temperature difference.  相似文献   

6.
The present study is concerned with cooling a metal hydride tank during the charging process by using a water jacket and fins. Results indicate that the effect of the water jacket becomes more significant over time. Variation of the Reynolds number has no influence on the charging time in the turbulent regime while changing the flow regime from laminar to turbulent improves the results slightly. Furthermore, adding fins on the cooling jacket enhances the heat transfer significantly through better removal of the heat from the central region of the metal bed. Hence, the charging time was significantly reduced.  相似文献   

7.
Heat transfer behavior with both the conductive and nonconductive fins have been analyzed by examining variations of the local and average Nusselt numbers in two‐dimensional flow. The main objective of this study is to quantify and compare the natural convection heat transfer enhancement of fin array with different fin aspect ratio and at different angles of inclination. It is found that significant heat transfer augmentation is obtained for both conductive and nonconductive fins. For conductive fins 20% higher augmentation factor is obtained when the fin aspect ratio is 6, angle of inclination is 60° and the pitch‐to‐length ratio is 0.2. For nonconductive fins, 10% higher augmentation factor is obtained when fin aspect ratio is 8, angle of inclination is 45° and pitch‐to‐length ratio at 0.5. A general correlation has been developed to predict the average Nusselt number and heat transfer augmentation factor for conductive and nonconductive fin arrays as a function of different fin configurations.  相似文献   

8.
Hydrogen absorption by ~5 kg LaNi5 in a metal hydride reactor is simulated. A cylindrical reactor (OD 88.9 mm, Sch- 40s, SS 316) with internal conical copper fins and cooling tubes (1/4, SS 316) carrying water at 1 m s−1 and 293 K (inlet) is considered. Designs with 10, 13 and 19 equi-spaced fins and 2, 4 and 6 cooling tubes are explored. Hydrogen (15 atm) is supplied through a coaxial metal filter (OD 12 mm, SS 316). Conical fins offer enhanced heat transfer through higher surface area and funnelling effect for efficient loading of metal hydride powder. 19 fins + 6 tubes design requires 290 and 375 s for 80% and 90% hydrogen saturation level, respectively. The fins near the water inlet regions are more effective as the water temperature is lower in these regions. Trade-off exists between times taken for saturation and the mass of metal hydride.  相似文献   

9.
以光伏/相变材料冷却系统(PV/PCM)为研究对象,数值研究翅片间距、厚度及外翅片长度对PCM换热性能影响。结果表明,翅片间距降低和外翅片长度增加可强化光伏组件冷却,提升电池发电性能,但翅片厚度对PCM换热性能影响较小。此外,选取无外翅片(方案1)和有外翅片(方案2,间距7.3 mm、厚度2 mm和长度25 mm)做对比研究,相对于方案1,方案2融化时间延长34.6%,电效率下降速度减缓68%且180 min时电池温度降低约30 ℃。  相似文献   

10.
It is well known that significant fouling by particulate matter can have a deleterious effect on the performance of enhanced surface heat exchangers, and the same is true for hybrid heat exchangers. Hybrid heat exchangers are heat exchangers that are typically run in dry mode to reject heat. When the ambient conditions require more heat rejection than can be provided by sensible heat transfer, a water pump is turned on and water flows over the fins, and the evaporation of water provides a further cooling effect. Fouling in dry-mode operation is physically similar to that of air-cooled heat exchangers, but in evaporative mode the flow of the water over the coil eliminates the impact of fouling. A hybrid dry cooler heat exchanger of 60 cm × 60 cm frontal area has been installed in a well-instrumented wind tunnel to measure the heat exchanger's performance. Hot water flows through the coil to provide the load, and air flows over the coil to provide cooling. During evaporative mode operation another stream of water flows over the outside face of the coil, adhering mainly to the louvered fins. The louvered fins are specially designed for optimized water flow during wetting mode. The fins are made of aluminum, the tubes are copper, and protection against corrosion is realized by a special E-coating. This coil has been tested clean and fouled with ASHRAE standard dust, for both dry and wet operation. Results are presented for the air-side pressure drop and overall heat transfer conductance of the coil under all conditions for which 50% increases in air-side pressure drop are found under heavy fouling. The influence of fouling on heat transfer is small. Also, using the wetting water to wash the fouling off the coil is investigated and is found to be of some limited utility.  相似文献   

11.
The present numerical analysis pertains to the heat transfer enhancement in a plate‐fin heat exchanger employing triangular shaped fins with a rectangular wing vortex generator on its slant surfaces. The study has been carried out for three different angles of attack of the wing, i.e., 15°, 20° and 26°. The aspect ratio of the wing is not varied with its angle of attack. The flow considered herein is laminar, incompressible, and viscous with the Reynolds number not exceeding 200. The pressure and the velocity components are obtained by solving the continuity and the Navier– Stokes equations by the Marker and Cell method. The present analysis reveals that the use of a rectangular wing vortex generator at an attack angle of 26° results in about a 35% increase in the combined spanwise average Nusselt number as compared to the plate‐triangular fin heat exchanger without any vortex generator. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20285  相似文献   

12.
A 2D mathematical modeling was developed to analyze the mass transport in a proton exchange membrane fuel cell. The pin fins were inserted in the flow channel to improve reactant gas distribution in the gas diffusion layer (GDL). The effect of rectangular and triangular shape of fins and different title angles of 4, 6 and 8° on the reactant gas transport were examined. The results showed that performance of rectangular fins are better than triangular fins due to increasing reactant spread over the GDL. The effect of three independent factors including length and width of blocks and hydrogen gas velocity on the response (hydrogen gas diffusion to GDL and pressure drop in anode channel) was investigated using analysis of variance (ANOVA). The results showed that block height and hydrogen gas velocity are the most important factors affecting the responses. Also, response surface methodology (RSM) method was used to predict the optimal conditions to achieve the minimum the pressure drop and maximum the total flux magnetic H2 to GDL in anode channel. The result of the optimization process shows that a gas velocity of 4.22 m/s and the block with height and width of 3 mm are the optimal conditions.  相似文献   

13.
Novel metal hydride (MH) hydrogen storage tanks for fuel cell electric forklifts have been presented in this paper. The tanks comprise a shell side equipped with 6 baffles and a tube side filled with 120 kg AB5 alloy and 10 copper fins. The alloy manufactured by vacuum induction melting has good hydrogen storage performance, with high storage capacity of 1.6 wt% and low equilibrium pressure of 4 MPa at ambient temperature. Two types of copper fins, including disk fins and corrugated fins, and three kinds of baffles, including segmental baffles, diagonal baffles and hole baffles, were applied to enhance the heat transfer in metal hydride tanks. We used the finite element method to simulate the hydrogen refueling process in MH tanks. It was found that the optimized tank with corrugated fins only took 630 s to reach 1.5 wt% saturation level. The intensification on the tube side of tanks is an effective method to improve hydrogen storage performance. Moreover, the shell side flow field and hydrogen refueling time in MH tanks with different baffles were compared, and the simulated refueling time is in good agreement with the experimental data. The metal hydride tank with diagonal baffles shows the shortest hydrogen refueling time because of the highest velocity of cooling water. Finally, correlations regarding the effect of cooling water flow rate on the refueling time in metal hydride tanks were proposed for future industrial design.  相似文献   

14.
The characteristics of heat exchangers with offset-type plate fins for space stations are studied for Reynolds numbers less than 300 based on the hydraulic diameter. A three-dimensional analysis is carried out to study the effects of the following parameters on the heat transfer and the flow characteristics: (a) the thermal boundary layer developing on the bottom plate and on the fins on the plate, (b) the aspect ratio (height/pitch) of the cross section of the flow passage, the fin thickness, the fin length in the direction of the flow, the thermal conductivity of the fluid and the fins, and the Prandtl number of the fluid. The results obtained are as follows. (1) The heat-transfer coefficient on the fin surface is characterized by the thermal-conductivity ratio of fluid to fin material. When the thermal conductivity of the fin material approaches that of the fluid, the heat-transfer coefficient on the fin surface becomes low. (2) The optimum condition of the aspect ratio depends on the value of the thermal-conductivity ratio between the fluid and the fins. (3) When the aspect ratio becomes large or small, the friction factor of offset fins approaches that of fully developed duct flow with the same aspect ratio as the Reynolds number decreases. © 1998 Scripta Technica. Heat Trans Jpn Res, 26(4): 249–261, 1997  相似文献   

15.
Numerical study is carried out to investigate the effect of different fin shapes on heating a square cavity by small heating strip located at the bottom wall. The natural convection of air is considered with constant heat flux from heat source which is located at the center of the bottom wall. The width of the heating strip is assumed to be 20% of the total width of the bottom wall. The remaining (non-heated) part of the bottom wall and the top wall are adiabatic and the side walls are maintained at constant temperature. The investigation considered four shapes of aluminum fins with equal area and equal base width. The easy to fabricate fin shapes are considered as: rectangular, one triangular, two opposite triangular and two isosceles triangular shape. Other parameters considered are the total area of the fin (or the height of the fin) and the Grashof number in the laminar flow range. It is found that the heat transfer can be enhanced by either increasing the Grashof number or the height of the fins. In most of the investigated cases the heat transfer in the case of the two opposite triangular fins shape is found to be higher than that of the other shapes under the same conditions.  相似文献   

16.
This study is dedicated to investigating the feasibility of photovoltaic/thermal (PV/T) collectors' technology for application in Jordan. Simple parallel-plate collector configurations were simulated using COMSOL: rectangular fins, triangular fins, and wavy walls. The wavy-wall configuration was found the most efficient alternative in terms of heat transfer with respect to the pumping power and performance factor that took into account the comparison with a plain-wall parallel-plate collector. However, the performance of the plain-wall parallel plate preceded that of the wavy wall by increasing the Reynolds number and the water channel height. The plain-wall parallel-plate configuration was further investigated on HOMER as a 5 MW solar plant that provides energy to a 5-MW facility. One MW of its load is direct thermal load. Different solar plant designs were compared. The PV/T plant was found to be very much energy saving but not feasible due to its high initial cost. However, the PV/T plant was better than the PV when the cooling was not complete compromising on some electric energy in favor of heat generation. Further work on reducing the cost of the PV/T collector is required especially with regard to contact methods between the PV and the absorber plate and to the weight of the collector.  相似文献   

17.
The numerical study of solar cell temperature for concentrating PV with concentration ratio of 10× is presented in this paper. A two dimensional thermal model has been developed to predict the temperature for PV concentrator system (solar cell and lens) with and without passive cooling arrangements. Based on a thermal model, the result shows that maximum of four numbers of uniform fins of 5 mm height and 1 mm thickness can be effectively used to reduce the solar cell temperature. In addition to that, the effects of ambient temperature and solar radiation intensity on the solar cell temperature have also been investigated for the system with and without cooling fins. Based on the influencing parameters of ambient temperature and solar radiation, two separate solar cell temperature correlations has been proposed for systems with and without cooling fins to predict the cell temperature for the range of given parameters. In our previous studies, the present 2-D model was extensively validated with a comprehensive unified model [8], [9] and [10].  相似文献   

18.
This paper presents a detailed analysis of an ammonia–water vertical tubular absorber cooled by air. The absorption process takes place co-currently upward inside the tubes. The tubes are externally finned with continuous plate fins and the tube rows are arranged staggered in the direction of the air flow. The air is forced over the tube bank and circulates between the plain fins in cross flow with the ammonia–water mixture. The analysis has been carried out by means of a mathematical model developed on the basis of mass and energy balances and heat and mass transfer equations. The model takes into account separately the churn, slug and bubbly flow patterns experimentally forecasted in this type of absorption processes inside vertical tubes and considers the simultaneous heat and mass transfer processes in both liquid and vapour phases, as well as heat transfer to the cooling air. The model has been implemented in a computer program. Results based on a representative design and nominal operating conditions of an absorber for a small capacity ammonia–water absorption refrigeration system are shown. A parametric analysis was realised to investigate the influence of the design parameters and operating conditions on the absorber performance. The noteworthy results that have effect on practical design of the absorber are presented and commented.  相似文献   

19.
The aim of the present numerical study is to analyze the effect of cooler location and aspect ratio and position of the hot solid body inside the enclosure on three-dimensional natural convection flow in a cubical enclosure. The cooler and heater positions and aspect ratio of the heater in a cavity are examined under different combinations of partially cooling vertical sidewalls and, hot solid body in the cubical cavity. That is, (i) different cooler locations with a fixed size of the hot solid body, and, (ii) centrally located hot solid body with different aspect ratio. The three-dimensional convective flow and thermal arrangements in the enclosure are analyzed using the distribution of streamlines, isosurfaces, and Nusselt number. It is found that the cooler location and aspect ratio of hot solid body play a key role on convective cooling and energy transport inside the enclosure. The unit aspect ratio of hot solid body provides higher energy transport inside the enclosure for all cooler positions.  相似文献   

20.
以高温透平叶片冷却为应用背景,对带有顺排、错排扰流片的矩形通道进行了实验研究。实验结果表明:在相同的雷诺数下,错排扰流片比顺排扰流片具有更好的强化换热效果,即便保持相同的流动阻力,错排扰流片的冷却效果仍强于顺排扰流片。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号