首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
渐近波形估计技术在三维电磁散射问题快速分析中的应用   总被引:13,自引:0,他引:13  
孙玉发  徐善驾 《电子学报》2002,30(6):794-796
本文将渐近波形估计技术应用到矩量法中,计算了三维理想导体目标的宽带雷达散射截面(RCS)和单站RCS方向图.用矩量法求解电场积分方程,得到给定频率点、给定方向入射波照射下的导体表面电流密度,应用渐近波形估计技术分别得到频带内任意频率点以及任意角度入射波照射下的导体表面电流密度,进而计算出宽带RCS和单站RCS方向图.计算结果表明渐近波形估计技术与矩量法结合可以逼近矩量法逐点计算的结果,且计算效率大大提高.  相似文献   

2.
目标的雷达散射截面(RCS)与照射角度和照射频率都有关系,采用渐近波形估计(AWE)技术在角度域和频率域上预测任意形状的理想导体的单站RCS,通过Pade逼近求出给定角度域内任意角度及给定频带内任意频点的表面电流密度分布,进而计算出给定目标的散射场及雷达散射截面。对数值结果与矩量法逐点求解的结果进行了比较,两者吻合较好,而且提高了计算效率。  相似文献   

3.
渐近波形估计技术是近年来提出的一种求解宽带电磁散射问题的有效方法,本文将渐近波形估计技术应用到矩量法中,计算了二维随机分布的理想导体柱的宽带雷达散射截面,计算结果与矩量法逐点计算的结果进行了比较,两者吻合良好,而计算效率得到了较大的提高。  相似文献   

4.
考虑导体柱的电磁散射 ,由于一般实际导体为良导体 ,若利用表面阻抗的边界条件 ,则良导体柱的电场积分方程 (EFIE)为第二类Fredholm积分方程 ;将矩量法 (MOM )应用到该积分方程时 ,该积分方程转化为第二类Fredholm矩阵方程。本文提出了一种求解第二类Fredholm矩阵方程的Lanczos AWE递归迭代快速算法 ,首先采用Lanczos技术快速求解在某一给定频率或角度时第二类Fredholm矩阵方程 ,得到在该频率或角度时良导体的表面电流分布 ;然后采用渐近波形估计 (AWE)技术求取所考虑的频段内任意频率或角度范围内任意角度时良导体的表面电流分布。根据表面电流分布预测了任意形状良导体柱的单站雷达散射截面 (RCS)的宽带与宽角响应。计算结果表明Lanczos AWE技术可大大加快MOM法的计算速度。  相似文献   

5.
渐近波形估计技术应用于导体柱RCS方向图的快速获取   总被引:8,自引:1,他引:7  
童创明  洪伟 《电子学报》2001,29(9):1198-1201
本文基于渐近波形估计(AWE)技术和矩量法(MOM)快速预测任意形状导电柱体(PEC)的单站RCS方向图.首先采用矩量法求解导体柱的电场积分方程,得到导体柱在某一给定方向入射波照射下的表面电流的低阶矩量,然后利用AWE技术求出在任意方向入射波照射下用有理分式函数表示的表面电流,进而计算出RCS方向图.计算结果表明AWE完全能逼近MOM精确计算的曲线,同时在计算速度上可加快几十倍.  相似文献   

6.
二维电大导体目标宽带雷达散射截面的快速计算   总被引:5,自引:4,他引:5  
施长海  孙玉发 《电波科学学报》2004,19(3):325-328,347
在矩量法的基础上,应用空间分解技术将二维电大导体目标剖分成若干子区域,考虑子区域间的耦合,通过累进迭代法计算出目标表面电流,然后结合渐近波形估计技术计算了二维电大导体目标的宽带雷达散射截面.数值计算表明:计算结果与矩量法逐点计算结果相吻合,计算效率大大提高.  相似文献   

7.
本文结合渐近波形估计技术(AWE)和体积分方程矩量法(VIE-MoM)快速分析介质体的宽角域散射问题。体积分方程用来对介质目标建模,用四面体元对目标进行体剖分,采用SWG基函数模拟四面体元内的电通量密度。应用矩量法将体积分方程离散生成矩阵方程。目标的雷达散射截面(RCS)高度依赖入射波方向,应用渐近波形估计技术在给定角度对电通量密度进行泰勒展开,采用padé逼近进一步展宽角域范围。最后,数值算例表明渐近波形估计技术结合体积分方程矩量法在介质宽角域散射分析方面的准确性和高效性。  相似文献   

8.
应用特征基函数法和渐近波形估计技术分析了二维多导体目标的电磁散射特性。特征基函数法对问题中的每个子域构造了一种包含散射问题不同域间的耦合效应的高级基函数,降低了生成的全局矩阵维度,从而可以对矩阵进行快速求解得到目标的表面电流,并结合渐近波形估计技术计算目标的宽带雷达散射截面。数值计算表明:计算结果与矩量法逐点计算结果相吻合,计算效率大大提高。  相似文献   

9.
叙述了矩量法(MOM)结合渐近波形估计(AWE)技术快速求解天线宽带输入阻抗的一般步骤,并将AWE技术拓展应用到阵列方向图的求解中.AWE技术的计算结果与经典矩量法计算的结果和SuperNEC的仿真结果比较,三者吻合很好,从而证明了该方法的精确性,同时也显现出了渐近波形估计技术可以大大减少计算时间的优势.  相似文献   

10.
WCAWE技术快速求解宽频带散射特性   总被引:1,自引:1,他引:0       下载免费PDF全文
万继响  梁昌洪 《电子学报》2004,32(6):1001-1004
本文首先对用于矩量法(MoM)频带响应求解的传统波形渐进估计(AWE)技术进行了深入分析,得出传统AWE技术有可能产生病态的Pade逼近系数矩阵这一重要结论.由此引用了良态波形渐进估计(WCAWE)技术,并用于快速求解任意形状三维导体的宽频带雷达散射截面.数值结果表明:采用WCAWE技术,计算效率明显提高.  相似文献   

11.
The method of moments (MoM) in conjunction with the asymptotic waveform evaluation (AWE) technique is applied to obtain the radar cross section (RCS) of an arbitrarily shaped three-dimensional (3-D) perfect electric conductor (PEC) body over a frequency band. The electric field integral equation (EFIE) is solved using the MoM to obtain the equivalent surface current on the PEC body. In the AWE technique, the equivalent surface current is expanded in a Taylor's series around a frequency in the desired frequency band. The Taylor series coefficients are then matched via the Pade approximation to a rational function. Using the rational function, the surface current is obtained at any frequency within the frequency range, which is in turn used to calculate the RCS of the 3-D PEC body. A rational function approximation is also obtained using the model-based parameter estimation (MBPE) method and compared with the Pade approximation. Numerical results for a square plate, a cube, and a sphere are presented over a frequency bandwidth. Good agreement between the AWE and the exact solution over the bandwidth is observed  相似文献   

12.
渐近波形估计(AWE)技术结合帕德(Pade)逼近的误差估计方法可以快速预测二维理想导电柱体的表面电流。首先采用表面离散化边界方程(OS-DBE)法对导体表面任意点的未知场源进行求解,其次运用AWE技术获得该点附近一段区域的场源分布,然后通过帕德逼近的误差估计方法可以确定AWE展开的确切范围。依此步骤进行下一个点的计算,最终可以求得导体表面上全部点的场源分布。计算结果表明此方法很大程度上提高了OS-DBE法的计算效率和AWE技术的实用价值。  相似文献   

13.
渐近波形估计技术用于介质柱宽角度RCS的计算   总被引:10,自引:7,他引:3  
基于渐近波开估计(AWE)技术和矩量法(MOM)快速预测任意形状非均匀介质柱体的单站雷达散射截面RCS方向图,采用矩量法求解介质柱的电场积分方程,得到介质柱在某一给定方向入射波照射下的极化电流,然后利用AWE技术将任一角度入射波照射下的极化给定角度附近展开成Taylor级数,通过Pade逼近将Taylor级数转化为有理函数,由此可获得介质柱在任一角度入射波照射下的极化电流,进而计算出RCS方向图。计算结果表明AWE完全能逼近MOM精确计算的曲线,同时可加快计算速度。  相似文献   

14.
三维散射体宽角度RCS的快速算法   总被引:5,自引:2,他引:3  
汪杰  洪伟 《电波科学学报》2001,16(2):241-244
基于渐近波形估计(AWE)技术和区域分裂法(DDM)快速预测有限长三维柱体的单站RCS方向图。首先采用区域分裂法结合频域有限差分(FDFD-DDM)把柱体表面的等效电流和磁流在给定的某一角度展开成Taylor级数,然后通过Pade逼近将Taylor级数转化为有理函数,由此可获得柱体在任一角度入射波照射下的表面等效电流和磁波,进而计算出单站RCS方向图。计算结果表明采用AWE技术得到的结果和直接采用FDFD-DDM法得到的结果吻合较好,同时计算效率得到了很大的提高。  相似文献   

15.
汪杰  洪伟 《电子学报》2001,29(9):1263-1265
本文基于渐近波形估计(AWE)技术和区域分裂法(DDM)快速预测有限长三维柱体RCS的频率响应.首先采用区域分裂法结合频域有限差分(FDFD-DDM)计算柱体表面等效电流和磁流在某一给定频率展开的Taylor级数,然后通过Padè逼近将Taylor级数转化为有理函数,由此可获得柱体在任一频率入射波照射下的表面等效电流和磁流,进而计算出RCS频率响应特性.本文结果和文献结果吻合较好,证明了本文方法的正确性,另外相对于直接采用FDFD-DDM法而言,计算效率得到了显著的提高.  相似文献   

16.
The pre-corrected fast Fourier transform (PFFT)/adaptive integral method (AIM) is combined with the asymptotic waveform evaluation (AWE) technique to present fast RCS calculation for arbitrarily shaped three-dimensional PEC objects over a frequency band. The electric field integral equation (EFIE) is used to formulate the problem and the method of moments (MoM) is employed to solve the integral equation. By using the AWE method, the unknown equivalent current is expanded into a Taylor series around a frequency in the desired frequency band. Then, instead of solving the equivalent current at each frequency point, it is only necessary to solve for the coefficients of the Taylor series (called “moments”) at each expansion point. Since the number of the expansion points is usually much smaller than that of the frequency points, the AWE can achieve fast frequency sweeping. To facilitate the analysis of large problems, in this paper, all the full matrices are stored in a sparse form and the PFFT/AIM method is employed to accelerate all the matrix-vector products on both sides of the matrix equation for the moments. Further, the incomplete LU preconditioner is used at each expansion point to improve the convergence behaviour of the matrix equation for the moments. The present method can deal with much larger problems than the conventional MoM-AWE method since the PFFT/AIM achieves considerable reduction in memory requirement and computation time. Numerical results will be presented to show the efficiency and capability of the method.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号