首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report two cases of severe hypertension and unilateral renal dysplasia. No renal artery stenosis and no other urogenital malformations were found. In both cases we found substantially enhanced secretion of renin from the dysplastic kidney. After nephrectomy both patients obtained a distinctive and permanent reduction or normalization of blood pressure. In the two cases reported, regional renin release induced by ischemia is a very likely etiological factor.  相似文献   

2.
We have investigated the role of metabotropic glutamate receptors linked to phosphoinositide hydrolysis in the control of glutamate release in cerebrocortical nerve terminals. The activation of these receptors with the agonist 3,5-dihydroxyphenylglycine enhanced intra-synaptosomal diacylglycerol and facilitated both the depolarization-induced increase in the cytosolic free Ca2+ concentration and the release of glutamate. However, 5 min after receptor activation, a second stimulation of the pathway with the agonist failed to produce diacylglycerol and to facilitate glutamate release. Interestingly, during the period in which the diacylglycerol response was desensitized, a strong agonist-induced inhibition of Ca2+ entry and glutamate release was observed. This change in the presynaptic effects of 3,5-dihydroxyphenylglycine is reversible since 30 min after the first stimulation, the agonist-induced inhibition of release disappeared, whereas both the production of diacylglycerol and the facilitation of glutamate release were recovered. The tonic elevation of the extracellular glutamate concentration from basal levels (0.8 microM) up to 5 microM also produced the switch from facilitation to inhibition in the receptor response. The existence of this activity-dependent switch in the presynaptic control of glutamate release suggests that release facilitation is limited to conditions under which an appropriate clearance of synaptic glutamate exists, probably to prevent the neurotoxic accumulation of glutamate in the synapse.  相似文献   

3.
During prolonged application of glutamate (20 min), patterns of increase in intracellular Ca2+ concentration ([Ca2+]i) were studied in HEK-293 cells expressing metabotropic glutamate receptor, mGluR1alpha or mGluR5a. Stimulation of mGluR1alpha induced an increase in [Ca2+]i that consisted of an initial transient peak with a subsequent steady plateau or an oscillatory increase in [Ca2+]i. The transient phase was largely attributed to Ca2+ mobilization from the intracellular Ca2+ stores, but the sustained phase was solely due to Ca2+ influx through the mGluR1alpha receptor-operated Ca2+ channel. Prolonged stimulation of mGluR5a continuously induced [Ca2+]i oscillations through mobilization of Ca2+ from the intracellular Ca2+ stores. Studies on mutant receptors of mGluR1alpha and mGluR5a revealed that the coupling mechanism in the sustained phase of Ca2+ response is determined by oscillatory/non-oscillatory patterns of the initial Ca2+ response but not by the receptor identity. In mGluR1alpha-expressing cells, activation of protein kinase C selectively desensitized the pathway for intracellular Ca2+ mobilization, but the mGluR1alpha-operated Ca2+ channel remained active. In mGluR5a-expressing cells, phosphorylation of mGluR5a by protein kinase C, which accounts for the mechanism of mGluR5a-controlled [Ca2+]i oscillations, might prevent desensitization and result in constant oscillatory mobilization of Ca2+ from intracellular Ca2+ stores. Our results provide a novel concept in which oscillatory/non-oscillatory mobilizations of Ca2+ induce different coupling mechanisms during prolonged stimulation of mGluRs.  相似文献   

4.
Several non-physiological stimuli (i.e. pharmacological or electrical stimuli) have been shown to induce Fos expression in striatal neurons. In this work, striatal Fos (i.e. Fos-like) expression was studied after physiological stimulation, i.e. motor activity (treadmill running at 36 m/min for 20 min). In rats killed 2 h after the treadmill session, Fos expression was observed in the medial region of the rostral and central striatum, and in the dorsal region of the caudal striatum. Fos expression was prevented by pretreatment with the non-competitive N-methyl-D-aspartate (NMDA) glutamate receptor antagonist MK-801 (0.1 mg/kg) or the D1 dopamine receptor antagonist SCH-23390 (0.1 mg/kg), but not by pretreatment with the D2 receptor antagonist eticlopride (0.5 mg/kg). Thirty-six hours after 6-hydroxydopamine lesion, a considerable reduction in treadmill-induced Fos expression was observed in both sides; however, Fos expression in the lesioned striatum was higher than in the contralateral intact striatum. Several weeks after unilateral 6-hydroxydopamine lesion of the nigrostriatal system, treadmill-induced Fos expression was significantly, but not totally, reduced in the lesioned striatum. Corticostriatal deafferentation also led to considerable reduction in treadmill-induced Fos expression. The present results indicate that exercise induces striatal Fos expression and that, under physiological stimulation, concurrent activation of D1 and NMDA receptors is necessary for such expression to occur. Reduction of Fos expression is practically absolute after acute blockage of these receptors, but not after lesions, possibly due partially to compensatory changes.  相似文献   

5.
We studied how metabotropic glutamate receptor (mGluR) activation modifies the synaptic and intrinsic membrane properties of neonatal rat trigeminal motoneurons using the broad-spectrum mGluR agonist (1S,3R)-1-amino-1,3-cyclopentane-dicarboxylic acid [(1S,3R)-ACPD], group I/II antagonist (+/-)-alpha-methyl-4-carboxy-phenylglycine (MCPG), and group III agonist L-2-amino-4-phosphonobutanoate (L-AP4). (1S,3R)-ACPD depressed excitatory transmission to trigeminal motoneurons presynaptically and postsynaptically via presynaptic inhibition and by reducing the currents carried by ionotropic glutamate receptors selective for AMPA. (1S,3R)-ACPD also depolarized trigeminal motoneurons and increased input resistance by suppressing a Ba2+-sensitive leakage K+ current. These effects were not mimicked by L-AP4 (100-200 microM). High-threshold Ca2+ currents were also suppressed by (1S,3R)-ACPD. Repetitive stimulation of excitatory premotoneurons mimicked the postsynaptic effects of (1S, 3R)-ACPD. The postsynaptic effects of (1S,3R)-ACPD and repetitive stimulation were both antagonized by MCPG, suggesting that mGluRs were similarly activated in both experiments. We conclude that mGluRs can be recruited endogenously by glutamatergic premotoneurons and that mGluR-mediated depression of excitatory transmission, combined with increased postsynaptic excitability, enhances the signal-to-noise ratio of oral-related synaptic input to trigeminal motoneurons during rhythmical jaw movements.  相似文献   

6.
The ability to control the degree and spatial distribution of cooling in biological tissues during a thermally mediated therapeutic procedure would be useful for several biomedical applications of lasers. We present a theory based on the solution of the heat conduction equation that demonstrates the feasibility of selectively cooling biological tissues. Model predictions are compared with infrared thermal measurements of in vivo human skin in response to cooling by a cryogen spurt. The presence of a boundary layer, undergoing a liquid-vapour phase transition, is associated with a relatively large thermal convection coefficient (approximately 40 kW m-2 K-1), which gives rise to the observed surface temperature reductions (30-40 degrees C). The degree and the spatial-temporal distribution of cooling are shown to be directly related to the cryogen spurt duration.  相似文献   

7.
This research sought to test the presence and function of metabotropic excitatory amino acid receptors (mGluR) in the frog semicircular canal (SCC). The mGluR agonist +/- 1-aminocyclopentane-trans-1,3-dicarboxylate (ACPD) produced an increase in afferent firing rates of the ampullar nerve of the intact posterior canal. This increase was not due to a stimulation of cholinergic efferent terminals or the acetylcholine (ACh) receptor, since atropine, in concentrations which blocked the response to exogenous acetylcholine, did not affect the response to ACPD. Likewise, ACPD effects were not due to stimulation of postsynaptic NMDA receptors, since the NMDA antagonist D(-)-2-amino-5-phosphonopentanoate (AP-5) did not affect the response to ACPD, reinforcing the reported selectivity of ACPD for mGluRs. When the SCC was superfused with artificial perilymph known to inhibit hair cell transmitter release (i.e. low Ca-high Mg), ACPD failed to increase afferent firing. This suggests that the receptor activated by ACPD is located on the hair cell. Pharmacological evidence suggested that the mGluRs involved in afferent facilitation belong to Group I (i.e. subtypes 1 and 5). In fact, the Group III agonist AP-4 had no effect, and the ACPD facilitatory effect was blocked by the Group I mGluR antagonists (S)-4-carboxyphenylglycine (CPG) and (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). Additional pharmacological evidence supported the presence of Group I mGluRs. Interestingly, the mGluR antagonists, AIDA and 4CPG, by themselves did not affect the resting firing rates of ampullar afferents. This may suggest that the mGluRs are not involved in resting activity but perhaps only in evoked activity (as suggested in Guth et al. (1991) Hear. Res. 56, 69-78). In addition, the mRNA for the mGluR1 has been detected in hair cells of both SCC, utricle, and saccule. In summary, the evidence points to an mGluR localized to the hair cell (i.e. an autoreceptor) which may be activated to produce a positive feedback augmentation of evoked but not resting transmitter release and thus affect afferent activity.  相似文献   

8.
The pharmacological profile of mGlu receptors negatively linked to adenylyl cyclase was characterized in adult rat striatal slices. Among the mGlu agonists tested, (+)-2-aminobicyclo-[3.1.0]-hexane-2,6-di carboxylate (LY354740), was the most potent inhibitor of forskolin-stimulated cAMP formation (EC50 = 11 +/- 2 nM). Inhibition of forskolin stimulation by the group III agonist L-2-amino-4-phosphono-butanoate (L-AP4) was biphasic, the two parts of the concentration curve having EC50 values of 6 +/- 1 microM and 260 +/- 4 microM, suggesting a sequential recruitment of mGlu4/8 and mGlu7. The effects of several new phenylglycine derivative antagonists were tested on the inhibition of forskolin cAMP response by (2S,1'S,2'S)-2-(carboxy-cyclopropyl)-glycine (L-CCG I) and L-AP4. At 500 microM, (RS)-alpha-methyl-3-carboxy-methyl-pheny lglycine was unable to antagonize the effect of L-CCG I or L-AP4 but (S)-alpha-methyl-3-carboxy-phenylalanine inhibited the effect of L-AP4 with a low potency. Finally, (RS)-alpha-methyl-4-tetrazolylphenylglyc ine and particularly (RS)-alpha-methyl-4-phosphonophenylglyci ne, appeared to be the most potent and selective antagonists of L-AP4 induced inhibition of forskolin-stimulated cAMP production in adult rat striatal slices.  相似文献   

9.
The nonpeptide, tachykinin NK1 receptor antagonist, CP-96345, permits the study of the physiological role of extrapyramidal substance P systems. Using microdialysis, we observed that locally applied CP-96345 (200 nM) caused a significant increase in dopamine release in the striatum as well as substantially enhancing striatal dopamine release caused by a low dose of methamphetamine (0.5 mg/kg s.c.). In addition, multiple systemic administrations of CP-96345 almost doubled the dopamine-mediated responses of the striatal neurotensin and dynorphin systems to high doses of methamphetamine (10 mg/kg/dose s.c.). Our findings suggest that the physiological role of substance P released in the striatum is to decrease the activity of the nigrostriatal dopamine pathway.  相似文献   

10.
In rat cerebellar slices, repetitive parallel fiber stimulation evokes an inward, postsynaptic current in Purkinje cells with a fast component mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptors and a slower component mediated by metabotropic glutamate receptors (mGluR). The mGluR-mediated excitatory postsynaptic current (mGluR-EPSC) is evoked selectively by parallel fiber stimulation; climbing fiber stimulation is ineffective. The mGluR-EPSC is elicited most effectively with increasing frequencies of parallel fiber stimulation, from a threshold of 10 Hz to a maximum response at approximately 100 Hz. The amplitude of the mGluR-EPSC is a linear function of the number of stimulus pulses without any apparent saturation, even with >10 pulses. Thus mGluRs at the parallel fiber-Purkinje cell synapse can function as linear detectors of the number of spikes in a burst of activity in parallel fibers. The mGluR-EPSC is present from postnatal day 15 and persists into adulthood. It is inhibited by the generic mGluR antagonist (RS)-a-methyl-4-carboxyphenylglycine and by the group I mGluR antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid at a concentration selective for mGluR1. Although the intracellular transduction pathway involves a G protein, the putative mediators of mGluR1 (phospholipase C and protein kinase C) are not directly involved, indicating that the mGluR-EPSC studied here is mediated by a different and still unidentified second-messenger pathway. Heparin, a nonselective antagonist of inositol-trisphosphate (IP3) receptors, has no significant effect on the mGluR-EPSC, suggesting that also IP3 might be not required for the response. Buffering intracellular Ca2+ with a high concentration of bis-(o-aminophenoxy)-N,N,N', N'-tetraacetic acid partially inhibits the mGluR-EPSC, indicating that Ca2+ is not directly responsible for the response but that resting Ca2+ levels exert a tonic potentiating effect on the mGluR-EPSC.  相似文献   

11.
Metabotropic glutamate receptors are a major class of excitatory amino acid receptors. Eight metabotropic glutamate receptors subtypes have been cloned and have been classified into three groups based on their amino acid sequence homology, effector systems, and pharmacological profile. Previous results have shown that striatal group I metabotropic glutamate receptor stimulation produces vigorous contralateral rotation in intact rats, thought to be due to increased striatal dopamine release. Examination of FOS-like immunoreactivity and local cerebral glucose metabolism suggests that this occurs secondary to activation of the subthalamic nucleus. We sought to determine the contribution of dopamine by examining metabotropic glutamate receptor agonist-induced rotation in rats following acute dopamine depletion by reserpine/alpha-methyl-para-tyrosine treatment, or chronic dopamine depletion by 6-hydroxydopamine treatment. In unilateral 6-hydroxydopamine lesioned rats, the group I metabotropic glutamate receptor agonist (RS)-3,5-dihydroxyphenylglycine induced contralateral rotation with a coincident increase in striatal 3,4-dihydroxyphenylacetic acid. The rotation was attenuated by the group I antagonist 1-aminoindan-1,5-dicarboxylate. Examination of FOS-like immunoreactivity and [14C]2-deoxyglucose uptake in chronically dopamine depleted rats also revealed similar patterns to those seen previously in intact rats. However, acutely dopamine depleted rats do not exhibit metabotropic glutamate receptor agonist-induced rotation and show a different pattern of [14C]2-deoxyglucose uptake, with no increase in glucose utilization in the intermediate and deep layers of the superior colliculus. These results suggest that there are compensatory changes under conditions of chronic dopamine denervation which permit metabotropic glutamate receptor agonist-induced rotation to occur, which may include dopamine receptor supersensitivity, increased dopamine turnover, and/or changes in sensitivity of striatal group I metabotropic glutamate receptors. The group III metabotropic glutamate receptor agonist L-(+)-2-amino-4-phosphonobutyrate induced contralateral rotation in 6-hydroxydopamine lesioned rats, while it had no effect in intact rats. Additionally, examination of FOS-like immunoreactivity revealed a distinct pattern following L-(+)-2-amino-4-phosphonobutyrate administration in 6-hydroxydopamine lesioned versus intact rats. These results suggest that there is a change in the effect of striatal group III stimulation under conditions of dopamine depletion.  相似文献   

12.
The effects of NMDA and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) on endogenous acetylcholine release from rat striatal slices and synaptosomes were investigated. Both agonists (1-300 microM) facilitated acetylcholine release from slices in a dose-dependent manner. NMDA (100-300 microM) and AMPA (30-300 microM), however, subsequently inhibited acetylcholine release. NMDA (100 microM)-induced facilitation was antagonized by 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid (CPP) and dizocilpine (both 1-10 microM), whereas the 10 microM AMPA effect was antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 1-30 microM). NMDA (100 microM)-induced inhibition was counteracted by CPP, but not dizocilpine, and by the nitric oxide synthase inhibitor L-nitroarginine (1-100 microM). Tetrodotoxin (0.5 microM) prevented the facilitatory effect of 3 microM NMDA and AMPA, but left unchanged that of 30 microM NMDA and 100 microM AMPA. Acetylcholine release from synaptosomes was stimulated by KCl (7.5-100 mM) in a dose-dependent manner. NMDA and AMPA maximally potentiated the 20 mM KCl effect at 1 microM and 0.01 microM, but were ineffective at 100 microM and 10 microM, respectively. Inhibition of acetylcholine release was never found in synaptosomes. The effects of 1 microM NMDA and 0.01 microM AMPA were antagonized by CPP (0.0001-1 microM) or dizocilpine (0.0001-10 microM) and by CNQX (0.001-1 microM), respectively. These data suggest that glutamatergic control of striatal acetylcholine release is mediated via both pre- and postsynaptic NMDA and non-NMDA ionotropic receptors.  相似文献   

13.
Brain functions may be lateralized to the right or the left hemisphere. However, the biochemical characteristics accompanying these functions are largely unknown. To test possible lateralization of striatal dopamine D2 receptors, we examined 18 volunteers using 123I-iodobenzamide and single photon emission tomography. The striatum-to-cerebellum D2 binding ratio was 1.93 +/- 0.22 (mean +/- S.D.) on the right side and 1.85 +/- 0.19 on the left side. In 14 subjects, D2 binding was higher in the right compared to the left striatum (P < 0.05). These results are supported by a meta-analysis performed on 15 studies reported in the literature. We conclude that side differences of striatal dopamine D2 receptors exist. We propose that motor activity could be responsible for our findings.  相似文献   

14.
On-line in vivo microdialysis was used to determine the effects of a 16-min handling period on release of dopamine (DA) in the nucleus accumbens and of DA and noradrenaline (NA) in the medial prefrontal cortex of awake, freely moving rats. DA and NA were determined in one HPLC run. Handling resulted in an immediate and strong increase of both catecholamines in the prefrontal cortex. Maximal values for DA were 295%, and for NA 225%, of controls. DA in the nucleus accumbens was also increased (to 135% of controls) but only after a short delay. Local inhibition of ionotropic glutamate receptors by continuous reversed dialysis of the drugs 6-cyano-7-nitroquinoxaline, D-2-amino-5-phosphonopentanoic acid, or dizocilpine did not significantly affect handling-induced increases in cortical DA and NA release. Neither did the agonist of metabotropic glutamate receptors, trans-(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD), or the GABA-B agonist baclofen. Reversed dialysis of dizocilpine in the nucleus accumbens was equally ineffective, but ACPD inhibited the increase in DA release in this area. Stimulation of metabotropic glutamate receptors in the nucleus accumbens was previously reported to inhibit activation of DA release in that area after stimulation of glutamatergic or dopaminergic afferents. It is concluded that metabotropic receptors in the nucleus accumbens are important for the control of activation of DA release in the accumbens by physiological stimuli but that a similar mechanism is lacking in the prefrontal cortex.  相似文献   

15.
16.
17.
The modulation of intracellular pH by activation of metabotropic glutamate receptors was investigated in cultured and acutely dissociated rat astrocytes. One minute superfusion of 100 microM (1S,3R)-1-aminocyclopentane-1, 3-dicarboxcylic acid (ACPD) evoked an alkaline shift of 0.13 +/- 0. 013 (mean +/- SE) and 0.16 +/- 0.03 pH units in cultured (cortical or cerebellar) and acutely dissociated cortical astrocytes, respectively. Alkalinizations were elicited by concentrations of ACPD as low as 1 muM. The ACPD response was mimicked by S-3-hydroxyphenylglycine (3-HPG) and by (s)-4-carboxy-3-hydroxyphenylglycine (4C-3HPG) but was not blocked by alpha-methyl-4-carboxyphenylglycine (MCPG) or (RS)-1-aminoindan-1, 5-dicarboxcylic acid (AIDA), features consistent with an mGluR5 receptor-mediated mechanism. The ACPD-evoked alkaline shift was insensitive to amiloride, 4,4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS), and the v-type ATPase inhibitors 7-chloro-4-nitrobenz-2-oxa-1,3-diazol (NBD-Cl), bafilomycin, and concanamycin. The alkaline response persisted in Na+- or Cl--free saline, but was reversibly blocked in bicarbonate-free, N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES)-buffered solutions. A bicarbonate-dependent and Na+-independent alkaline shift could also be elicited by either 3 mM caffeine or 1 muM ionomycin. These data suggest that a rise in cytosolic Ca2+ activity is instrumental in triggering the alkalinizing mechanism and that this response is independent of the classic depolarization-induced alkalinization mediated by electrogenic sodium-bicarbonate cotransport.  相似文献   

18.
Metabotropic glutamate receptors have been implicated in modulation of synaptic transmission in many different systems. This study reports the effects of selective activation of metabotropic glutamate receptors on synaptic transmission in intracellularly recorded locus coeruleus neurons in brain slice preparations. Perfusion of either L-2-amino-4-phosphonobutyric acid (L-AP4; 0.1-500 microM) or (+/-)-1-aminocyclopentane-trans-1,3,dicarboxylic acid (t-ACPD; 0.1-500 microM) caused a depression of excitatory postsynaptic potentials in a dose-dependent fashion to about 70% inhibition. Both agonists exerted their effects at relatively low concentrations with estimated EC50s of 2.6 microM and 11.5 microM for L-AP4 and t-ACPD, respectively. This inhibition was not observed with the potent group I metabotropic glutamate receptor agonist (RS)-3,5-dihydroxyphenylglycine (DHPG; 100 microM). Conversely, (R)-4-carboxy-3-hydroxyphenyl-glycine (4C-3H-PG), a group I antagonist/group II agonist, and 2R,4R-4-aminopyrrolidine-2,4-dicarboxylate (APDC), a novel and specific group II agonist, also caused an inhibition of excitatory postsynaptic potentials. Both t-ACPD and L-AP4 produced an increase in paired-pulse facilitation, and failed to change the locus coeruleus response to focally applied glutamate, indicating a presynaptic locus of action. The L-AP4 inhibition was antagonized by (S)-amino-2-methyl-4-phosphonobutanoic acid (MAP4: group III antagonist) but not by (RS)-alpha-methyl-4-carboxyphenylglycine [(RS)-MCPG; mixed antagonist], suggesting that this agonist acts through a type 4 metabotropic glutamate receptor. Conversely, t-ACPD was antagonized by MCPG and by ethyl glutamate (group II antagonist), but not by aminoindan dicarboxylic acid (AIDA; group I antagonist) or MAP4, suggesting that this agonist acts on a type 2 or 3 metabotropic glutamate receptor. Taken together, these results suggest that two pharmacologically distinct presynaptic metabotropic glutamate receptors function in an additive fashion to inhibit excitatory synaptic transmission in locus coeruleus neurons. These receptors may be involved in a feedback mechanism and as such may function as autoreceptors for excitatory amino acids.  相似文献   

19.
Chromogranin A (CGA), a prohormone and a protein component of endocrine and neural secretory granules, neuritic plaques in Alzheimer's disease and Lewy bodies in Parkinson's disease, inhibited the release of dopamine (DA) from perfused rat striatal slices. Dopamine release was stimulated by a pulse of high potassium (40mM) medium introduced at 20 minutes (K1) and 55 minutes (K2) following equilibration. The ratio of K2/K1 was 0.80+/-0.04 in control tissues, but fell significantly to 0.26+/-0.08 when 100nM purified CGA was added prior to the second potassium pulse. This reduction in DA release was equivalent to that seen when calcium was excluded from the buffer (0.19+/-0.05). Pancreastatin, a centrally active peptide product of CGA, had no effect on stimulated DA release (0.77+/-0.06), although it, as well as the other treatments, did reduce basal DA release. It is likely that the parent molecule itself, CGA, or an as yet unidentified product is responsible for inhibition of K-stimulated striatal DA release.  相似文献   

20.
Using a rat 4-vessel occlusion model of cerebral ischaemia we studied the changes in the mRNA level for the metabotropic receptor subtypes mGluR1 alpha, mGluR1 beta, mGluR2, mGluR3, mGluR4, and mGluR5 by means of in situ hybridization with oligonucleotides. After 24 hours of reperfusion the mRNA levels were significantly increased for mGluR2 and mGluR4 while it was significantly decreased for mGluR5. These results suggest that vulnerable neurones react to an increased extracellular glutamate concentration by differential regulation of the mRNA for metabotropic glutamate receptor subtypes which perhaps reflects the different pre- or postsynaptic location and different involvement in ischaemic neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号