首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
In vivo, fibroblast growth factor-2 (FGF-2) inhibits longitudinal bone growth. Similarly, activating FGF receptor 3 mutations impair growth in achondroplasia and thanatophoric dysplasia. To investigate the underlying mechanisms, we chose a fetal rat metatarsal organ culture system that would maintain growth plate histological architecture. Addition of FGF-2 to the serum-free medium inhibited longitudinal growth. We next assessed each major component of longitudinal growth: proliferation, cellular hypertrophy, and cartilage matrix synthesis. Surprisingly, FGF-2 stimulated proliferation, as assessed by [3H]thymidine incorporation. However, autoradiographic studies demonstrated that this increased proliferation occurred only in the perichondrium, whereas decreased labeling was seen in the proliferative and epiphyseal chondrocytes. FGF-2 also caused a marked decrease in the number of hypertrophic chondrocytes. To assess cartilage matrix synthesis, we measured 35SO4 incorporation into newly synthesized glycosaminoglycans. Low concentrations (10 ng/ml) of FGF-2 stimulated cartilage matrix production, but high concentrations (1000 ng/ml) inhibited matrix production. We conclude that FGF-2 inhibits longitudinal bone growth by three mechanisms: decreased growth plate chondrocyte proliferation, decreased cellular hypertrophy, and, at high concentrations, decreased cartilage matrix production. These effects may explain the impaired growth seen in patients with achondroplasia and related skeletal dysplasias.  相似文献   

2.
During vertebrate limb development, growth plate chondrocytes undergo temporally and spatially coordinated differentiation that is necessary for proper morphogenesis. Parathyroid hormone-related peptide (PTHrP), its receptor, the PTH/PTHrP receptor, and Indian hedgehog are implicated in the regulation of chondrocyte differentiation, but the specific cellular targets of these molecules and specific cellular interactions involved have not been defined. Here we generated chimeric mice containing both wild-type and PTH/PTHrP receptor (-/-) cells, and analyzed cell-cell interactions in the growth plate in vivo. Abnormal differentiation of mutant cells shows that PTHrP directly signals to the PTH/PTHrP receptor on proliferating chondrocytes to slow their differentiation. The presence of ectopically differentiated mutant chondrocytes activates the Indian hedgehog/PTHrP axis and slows differentiation of wild-type chondrocytes. Moreover, abnormal chondrocyte differentiation affects mineralization of cartilaginous matrix in a non-cell autonomous fashion; matrix mineralization requires a critical mass of adjacent ectopic hypertrophic chondrocytes. Further, ectopic hypertrophic chondrocytes are associated with ectopic bone collars in adjacent perichondrium. Thus, the PTH/PTHrP receptor directly controls the pace and synchrony of chondrocyte differentiation and thereby coordinates development of the growth plate and adjacent bone.  相似文献   

3.
During endochondral bone formation, cells in the emerging cartilaginous model transit through a cascade of several chondrocyte differentiation stages, each characterized by a specific expression repertoire of matrix macromolecules, until, as a final step, the hypertrophic cartilage is replaced by bone. In many permanent cartilage tissues, however, late differentiation of chondrocytes does not occur, due to negative regulation by the environment of the cells. Here, addressing the reason for the difference between chondrocyte fates in the chicken embryo sternum, cells from the caudal and cranial part were cultured separately in serum-free agarose gels with complements defined earlier that either permit or prevent hypertrophic development. Total RNA was extracted using a novel protocol adapted to agarose cultures, and the temporal changes in developmental stage-specific mRNA expression were monitored by Northern hybridization and phosphor image analysis. Kinetic studies of the mRNA accumulation not only showed significant differences between the expression patterns of cranial and caudal cultures after recovery, but also revealed two checkpoints of chondrocyte differentiation in keeping with cartilage development in vivo. Terminal differentiation of caudal chondrocytes is blocked at the late proliferative stage (stage Ib), while the cranial cells can undergo hypertrophic development spontaneously. The differentiation of cranial chondrocytes is reversible, since they can re-assume an early proliferative (stage Ia) phenotype under the influence of insulin, fibroblast growth factor-2 and transforming growth factor-beta in combination. Thus, the expression pattern in the latter culture resembles that of articular chondrocytes. We also provide evidence that the capacities of caudal and sternal chondrocytes to progress from the late proliferative (stage Ib) to hypertrophic stage (stage II) correlate with their differing abilities to express the Indian hedgehog gene.  相似文献   

4.
Mice in which the genes encoding the parathyroid hormone (PTH)-related peptide (PTHrP) or the PTH/PTHrP receptor have been ablated by homologous recombination show skeletal dysplasia due to accelerated endochondral bone formation, and die at birth or in utero, respectively. Skeletal abnormalities due to decelerated chondrocyte maturation are observed in transgenic mice where PTHrP expression is targeted to the growth plate, and in patients with Jansen metaphyseal chondrodysplasia, a rare genetic disorder caused by constitutively active PTH/PTHrP receptors. These and other findings thus indicate that PTHrP and its receptor are essential for chondrocyte differentiation. To further explore the role of the PTH/PTHrP receptor in this process, we generated transgenic mice in which expression of a constitutively active receptor, HKrk-H223R, was targeted to the growth plate by the rat alpha1 (II) collagen promoter. Two major goals were pursued: (i) to investigate how constitutively active PTH/PTHrP receptors affect the program of chondrocyte maturation; and (ii) to determine whether expression of the mutant receptor would correct the severe growth plate abnormalities of PTHrP-ablated mice (PTHrP-/-). The targeted expression of constitutively active PTH/PTHrP receptors led to delayed mineralization, decelerated conversion of proliferative chondrocytes into hypertrophic cells in skeletal segments that are formed by the endochondral process, and prolonged presence of hypertrophic chondrocytes with delay of vascular invasion. Furthermore, it corrected at birth the growth plate abnormalities of PTHrP-/- mice and allowed their prolonged survival. "Rescued" animals lacked tooth eruption and showed premature epiphyseal closure, indicating that both processes involve PTHrP. These findings suggest that rescued PTHrP-/- mice may gain considerable importance for studying the diverse, possibly tissue-specific role(s) of PTHrP in postnatal development.  相似文献   

5.
Link protein (LP), an extracellular matrix protein in cartilage, stabilizes aggregates of aggrecan and hyaluronan, giving cartilage its tensile strength and elasticity. Cartilage provides the template for endochondral ossification and is crucial for determining the length and width of the skeleton. During endochondral bone formation, hypertrophic chondrocytes die and the cartilage is replaced with bone matrix. Here, we have generated targeted mutations in mice in the gene encoding LP (Crtl1). Homozygotes showed defects in cartilage development and delayed bone formation with short limbs and craniofacial anomalies. Most Crtl1(tm1Nid/tm1Nid) mice died shortly after birth due to respiratory failure, but some survived and developed progressive dwarfism and lordosis of the cervical spine. They showed small epiphysis, slightly flared metaphysis of long bones and flattened vertebrae, characteristic of spondyloepiphyseal dysplasias. The cartilage contained significantly reduced aggrecan depositions in the hypertrophic zone, and decreased numbers of prehypertrophic and hypertrophic chondrocytes. Reduced Indian hedgehog (Ihh) expression was observed in prehypertrophic chondrocytes, and apoptosis was inhibited in hypertrophic chondrocytes. These results indicate that LP is important for the formation of proteoglycan aggregates and normal organization of hypertrophic chondrocytes, and suggest that cartilage matrix has a role in chondrocyte differentiation and maturation.  相似文献   

6.
Thanatophoric dysplasia (TD) is a lethal skeletal disorder caused by recurrent mutations in the fibroblast growth factor receptor 3 (FGFR 3) gene. The mitogenic response of fetal TD I chondrocytes in primary cultures upon stimulation by either FGF 2 or FGF 9 did not significantly differ from controls. Although the levels of FGFR 3 mRNAs in cultured TD chondrocytes were similar to controls, an abundant immunoreactive material was observed at the perinuclear level using an anti-FGFR 3 antibody in TD cells. Transduction signaling via the mitogen-activated protein kinase pathway was assessed by measuring extracellular signal-regulated kinase activity (ERK 1 and ERK 2). Early ERKs activation following FGF 9 supplementation was observed in TD chondrocytes (2 min) as compared with controls (5 min) but no signal was detected in the absence of ligand. By contrast ligand-independent activation of the STAT signaling pathway was demonstrated in cultured TD cells and confirmed by immunodetection of Stat 1 in the nuclei of hypertrophic TD chondrocytes. Moreover, the presence of an increased number of apoptotic chondrocytes in TD fetuses was associated with a higher expression of Bax and the simultaneous decrease of Bcl-2 levels. Taken together, these results indicate that FGFR 3 mutations in TD I fetuses do not hamper chondrocyte proliferation but rather alter their differentiation by triggering premature apoptosis through activation of the STAT signaling pathway.  相似文献   

7.
Endochondral ossification in growth plates proceeds through several consecutive steps of late cartilage differentiation leading to chondrocyte hypertrophy, vascular invasion, and, eventually, to replacement of the tissue by bone. It is well established that the subchondral vascular system is pivotal in the regulation of this process. Cells of subchondral blood vessels act as a source of vascular invasion and, in addition, release factors influencing growth and differentiation of chondrocytes in the avascular growth plate. To elucidate the paracrine contribution of endothelial cells we studied the hypertrophic development of resting chondrocytes from the caudal third of chick embryo sterna in co-culture with endothelial cells. The design of the experiments prevented cell-to-cell contact but allowed paracrine communication between endothelial cells and chondrocytes. Under these conditions, chondrocytes rapidly became hypertrophied in vitro and expressed the stage-specific markers collagen X and alkaline phosphatase. This development also required signaling by thyroid hormone in synergy. Conditioned media could replace the endothelial cells, indicating that diffusible factors mediated this process. By contrast, smooth muscle cells, fibroblasts, or hypertrophic chondrocytes did not secrete this activity, suggesting that the factors were specific for endothelial cells. We conclude that endochondral ossification is under the control of a mutual communication between chondrocytes and endothelial cells. A finely tuned balance between chondrocyte-derived signals repressing cartilage maturation and endothelial signals promoting late differentiation of chondrocytes is essential for normal endochondral ossification during development, growth, and repair of bone. A dysregulation of this balance in permanent joint cartilage also may be responsible for the initiation of pathological cartilage degeneration in joint diseases.  相似文献   

8.
The roles of PTH and PTH-related peptide (PTH-rp) in the expression of matrix metalloproteinases (MMPs) during endochondral bone formation were investigated, using various cartilages obtained from young rabbits and rabbit chondrocyte cultures. Immunohistochemical, immunoblotting, zymographical, and/or Northern blot analyses showed that MMP-2 and -9 levels were much higher in the growth plate than in permanent cartilage in vivo. In growth plate chondrocyte cultures, PTH, PTH-rp, and (Bu)2cAMP increased the amount of MMP-2 present in the culture medium, as revealed by zymograms and immunoblots, whereas the other tested growth factors or cytokines, including bone morphogenetic protein-2 and interleukin-1, did not increase the MMP-2 level. PTH also increased the MMP-2 messenger RNA level within 24 h. In addition, PTH increased MMP-3 and -9 levels in the growth plate chondrocyte cultures. However, in articular chondrocyte cultures, PTH had little effect on the levels of MMP-2, -3, and -9. In contrast to PTH, interleukin-1 induced MMP-3 and -9, but not MMP-2, in growth plate and articular chondrocytes. These findings suggest that in ossifying cartilage, PTH/PTH-rp plays a pivotal role in the induction of various MMPs, including MMP-2 (which is considered to be a constitutive enzyme), and that PTH/PTH-rp is involved in the control of cartilage-matrix degradation during endochondral bone formation.  相似文献   

9.
Parathyroid hormone-related peptide (PTHrP) was initially identified as a product of malignant tumors that mediates paraneoplastic hypercalcemia. It is now known that the parathyroid hormone (PTH) and PTHrP genes are evolutionarily related and that the products of these two genes share a common receptor, the PTH/PTHrP receptor. PTHrP and the PTH/PTHrP receptor are widely expressed in both adult and fetal tissues, and recent gene-targeting and disruption experiments have implicated PTHrP as a developmental regulatory molecule. Apparent PTHrP functions include the regulation of endochondral bone development, of hair follicle formation, and of branching morphogenesis in the breast. Herein, we report that overexpression of PTHrP in chondrocytes using the mouse type II collagen promoter induces a novel form of chondrodysplasia characterized by short-limbed dwarfism and a delay in endochondral ossification. This features a delay in chondrocyte differentiation and in bone collar formation and is sufficiently marked that the mice are born with a cartilaginous endochondral skeleton. In addition to the delay, chondrocytes in the transgenic mice initially become hypertrophic at the periphery of the developing long bones rather than in the middle, leading to a seeming reversal in the pattern of chondrocyte differentiation and ossification. By 7 weeks, the delays in chondrocyte differentiation and ossification have largely corrected, leaving foreshortened and misshapen but histologically near-normal bones. These findings confirm a role for PTHrP as an inhibitor of the program of chondrocyte differentiation. PTHrP may function in this regard to maintain the stepwise differentiation of chondrocytes that initiates endochondral ossification in the midsection of endochondral bones early in development and that also permits linear growth at the growth plate later in development.  相似文献   

10.
Cartilage provides the template for endochondral ossification and is crucial for determining the length and width of the skeleton. Transgenic mice with targeted expression of recombinant cartilage-derived morphogenetic protein-1 (CDMP-1), a member of the bone morphogenetic protein family, were created to investigate the role of CDMP-1 in skeletal formation. The mice exhibited chondrodysplasia with expanded cartilage, which consists of the enlarged hypertrophic zone and the reduced proliferating chondrocyte zone. Histologically, CDMP-1 increased the number of chondroprogenitor cells and accelerated chondrocyte differentiation to hypertrophy. Expression of CDMP-1 in the notochord inhibited vertebral body formation by blocking migration of sclerotome cells to the notochord. These results indicate that CDMP-1 antagonizes the ventralization signals from the notochord. Our study suggests a molecular mechanism by which CDMP-1 regulates the formation, growth, and differentiation of the skeletal elements.  相似文献   

11.
Parathyroid hormone-related protein is required for tooth eruption   总被引:1,自引:0,他引:1  
Parathyroid hormone (PTH)-related protein (PTHrP)-knockout mice die at birth with a chondrodystrophic phenotype characterized by premature chondrocyte differentiation and accelerated bone formation, whereas overexpression of PTHrP in the chondrocytes of transgenic mice produces a delay in chondrocyte maturation and endochondral ossification. Replacement of PTHrP expression in the chondrocytes of PTHrP-knockout mice using a procollagen II-driven transgene results in the correction of the lethal skeletal abnormalities and generates animals that are effectively PTHrP-null in all sites other than cartilage. These rescued PTHrP-knockout mice survive to at least 6 months of age but are small in stature and display a number of developmental defects, including cranial chondrodystrophy and a failure of tooth eruption. Teeth appear to develop normally but become trapped by the surrounding bone and undergo progressive impaction. Localization of PTHrP mRNA during normal tooth development by in situ hybridization reveals increasing levels of expression in the enamel epithelium before the formation of the eruption pathway. The type I PTH/PTHrP receptor is expressed in both the adjacent dental mesenchyme and in the alveolar bone. The replacement of PTHrP expression in the enamel epithelium with a keratin 14-driven transgene corrects the defect in bone resorption and restores the normal program of tooth eruption. PTHrP therefore represents an essential signal in the formation of the eruption pathway.  相似文献   

12.
OBJECTIVE: Parathyroid hormone-related protein (PTHrP) is a major, locally expressed regulator of growth cartilage chondrocyte proliferation, differentiation, synthetic function, and mineralization. Because mechanisms that limit cartilage chondrocytes from maturing and mineralizing are diminished in osteoarthritis (OA), we studied PTHrP expression by articular chondrocytes. METHODS: PTHrP was studied in normal knee cartilage samples and cultured articular chondrocytes, and in cartilage specimens from knees with advanced OA, obtained at the time of joint replacement. RESULTS: PTHrP was more abundant in OA than in normal human knee articular cartilage. Both demonstrated PTH/PTHrP receptor expression. PTHrP 1-173, one of three alternatively spliced PTHrP isoforms, was exclusively expressed and induced by transforming growth factor beta in cultured chondrocytes. Chondrocytes mainly used the GC-rich P2 alternative promoter to express PTHrP messenger RNA. Inhibition by PTHrP 1-173, but not by PTHrP 1-146 or PTHrP 1-87, of inorganic pyrophosphate (PPi) elaboration suggested selective functional properties of the 1-173 isoform. Exposure to a neutralizing antibody to PTHrP increased PPi elaboration by articular chondrocytes. CONCLUSION: Increased expression of PTHrP, including the 1-173 isoform, has the potential to contribute to the pathologic differentiated functions of chondrocytes, including mineralization, in OA.  相似文献   

13.
Endochondral bone development begins with the formation of a cartilage template. Chondrocytes within this template undergo a progressive program of maturation from proliferative to prehypertrophic chondrocytes to hypertrophic chondrocytes. The progression of cells through these steps of differentiation must be carefully controlled to ensure coordinated growth. Because the Delta/Notch signaling system is known to regulate cell fate choices, we sought to determine if these molecules might be involved in the progressive cell fate decisions that chondocytes undergo. Here we demonstrate in the chick that Delta/Notch signaling negatively regulates progression from the prehypertrophic to hypertrophic state of differentiation. Delta-1 is expressed specifically in the hypertrophic chondrocytes while Notch-2 is expressed in chondrocytes at all stages. Misexpression of Delta-1 using a replication-competent retrovirus blocks chondrocyte maturation. Prehypertrophic cells form normally but do not undergo differentiation to hypertrophic cells, resulting in shortened skeletal elements that lack ossification. We conclude that Delta-1 acts during chondrogenesis to inhibit the transition from prehypertrophic chondrocytes to hypertrophic chondrocytes, thus defining a novel mechanism for the regulation of the chondrocyte maturation program. In addition, these results reveal a new role for Delta/Notch signaling in regulating the progression to a terminally differentiated state.  相似文献   

14.
Most vertebrate embryonic and post-embryonic skeletal tissue formation occurs through the endochondral process in which cartilage serves a transitory role as the anlage for the bone structure. The differentiation of chondrocytes during this process in vivo is characterized by progressive morphological changes associated with the hypertrophy of these cells and is defined by biochemical changes that result in the mineralization of the extracellular matrix. The mechanisms, which, like those in vivo, promote both chondrogenesis in presumptive skeletal cell populations and endochondral progression of chondrogenic cells, may be examined in vitro. The work presented here describes mechanisms by which cells within presumptive skeletal cell populations become restricted to a chondrogenic lineage as studied within cell populations derived from 12-day-old chicken embryo calvarial tissue. It is found that a major factor associated with selection of chondrogenic cells is the elimination of growth within serum-containing medium. Chondrogenesis within these cell populations appears to be the result of permissive conditions which select for chondrogenic proliferation over osteogenic cell proliferation. Data suggest that chondrocyte cultures produce autocrine factors that promote their own survival or proliferation. The conditions for promoting cell growth, hypertrophy, and extracellular matrix mineralization of embryonic chicken chondrocytes in vitro include ascorbic acid supplementation and the presence of an organic phosphate source. The differentiation of hypertrophic chondrocytes in vitro is associated with a 10-15-fold increase in alkaline phosphatase enzyme activity and deposition of mineral within the extracellular matrix. Temporal studies of the biochemical changes coincident with development of hypertrophy in vitro demonstrate that proteoglycan synthesis decreases 4-fold whereas type X collagen synthesis increases 10-fold within the same period. Ultrastructural examination reveals cellular and extracellular morphology similar to that of hypertrophic cells in vivo with chondrocytes embedded in a well formed extracellular matrix of randomly distributed collagen fibrils and proteoglycan. Mineral deposition is seen in the interterritorial regions of the matrix between the cells and is apatitic in nature. These characteristics of chondrogenic growth and development are very similar in vivo and in vitro and they suggest that studies of chondrogenesis in vitro may provide a valuable model for the process in vivo.  相似文献   

15.
Growth plate chondrocytes progress through a proliferative phase before acquiring a terminally-differentiated phenotype. In this study we used Percoll density gradients to separate chick growth plate chondrocytes into populations of different maturational phenotype. By applying agarose gel differential display to these populations we cloned a cDNA encoding a novel 268 amino acid protein (3X11A). 3X11A contains two peptide motifs that are conserved in a recently identified superfamily of phosphotransferases. It is likely that 3X11A is a phosphatase, but its substrate specificity remains uncertain. 3X11A expression is upregulated 5-fold during chondrocyte terminal differentiation and its expression is approximately 100-fold higher in hypertrophic chondrocytes than in non-chondrogenic tissues. This suggests that 3X11A participates in a biochemical pathway that is particularly active in differentiating chondrocytes.  相似文献   

16.
Estrogens affect longitudinal bone growth through their action on endochondral bone formation. Two estrogen receptors are known, the classical estrogen receptor-alpha (ER alpha), newly demonstrated in human growth plate cartilage, and a recently cloned estrogen receptor-beta (ER beta). The present study aimed to localize a possible expression of ER beta protein in human growth plates. Tissue samples were obtained from tibial and femoral growth plates in four female pubertal patients undergoing epiphyseal surgery. Immunohistochemistry, using two different ER beta-specific antibodies, demonstrated positive staining for ER beta in hypertrophic epiphyseal chondrocytes from all patients. No staining was noted in resting or proliferative chondrocytes. These data suggest that in addition to ER alpha, human epiphyseal chondrocytes also express ER beta. The physiological role of ER beta in the regulation of longitudinal bone growth in humans remains to be elucidated.  相似文献   

17.
During the process of endochondral ossification chondrocytes progress through stages of terminal differentiation culminating in apoptotic death. We have developed a serum-free suspension culture that allows terminal differentiation and facilitates the investigation of factors affecting chondrocyte apoptosis. We have found that chondrocytes not committed to terminal differentiation, i.e., those from the caudal region of chick embryo sterna, a region that remains cartilaginous for some months after the chick hatches, maintained high viability in serum-free suspension culture. A strong dependence of viability on culture density and sensitivity to induction of apoptosis with the protein kinase inhibitor, staurosporine, was consistent with the proposal that these chondrocytes, like nearly all cells, require intercellular communication for survival. Chondrocytes that were committed to terminal differentiation, i.e., those from the cephalic region of chick embryo sterna, a region that is replaced by bone before the chick hatches, expressed the hypertrophic phenotype but maintained their viability in culture for only approximately 6 days. Subsequent cell death was very consistent between cultures and shown to occur by an apoptotic process by analysis of DNA fragmentation and cell morphology. Short-term viability of hypertrophic chondrocytes was independent of culture density and relatively resistant to treatment with staurosporine. Induction of the hypertrophic phenotype in immature chondrocytes committed them to cell death and prevention of expression of the hypertrophic phenotype prevented cell death. We conclude that commitment of chondrocytes to terminal differentiation is associated with a commitment to apoptosis and apoptosis of hypertrophic chondrocytes in growth cartilage does not require initiation by external signals.  相似文献   

18.
The rat homeobox gene, rHox, was cloned from a rat osteosarcoma cDNA library. Southwestern and gel mobility shift analyses showed that rHox binds to the promoter regions of collagen (alpha1)I and osteocalcin genes while transient transfection with rHox resulted in repression of their respective promoter activities. In situ hybridization studies showed that rHox mRNA was widely expressed in osteoblasts, chondrocytes, skeletal muscle, skin epidermis, and bronchial and intestinal epithelial cells, as well as cardiac muscle in embryonic and newborn mice. However in 3-month-old mice, rHox mRNA expression was restricted to osteoblasts, megakaryocytes, and myocardium. Bone morphogenetic protein 2, a growth factor that commits mesenchymal progenitor cells to differentiate into osteoblasts, down-regulated rHox mRNA expression by 40-50% in UMR 201, a rat preosteoblast cell line, in a time- and dose-dependent manner. In contrast, PTH-related protein (PTHrP), recently shown to be a negative regulator of chondrocyte differentiation, significantly enhanced rHox mRNA expression in UMR 106-06 osteoblastic cells by 3-fold at 24 h while at the same time down-regulating expression of pro-alpha1(I) collagen mRNA by 60%. Expression of rHox mRNA in calvarial osteoblasts derived from PTHrP -/- mice was approximately 15% of that observed in similar cells obtained from normal mice. In conclusion, current evidence suggests that rHox acts as a negative regulator of osteoblast differentiation. Furthermore, down-regulation of rHox mRNA by bone morphogenetic protein 2 and its up-regulation by PTHrP support a role of the homeodomain protein, rHox, in osteoblast differentiation.  相似文献   

19.
Recent procedures for autologous repair of cartilage defects may be difficult in elderly patients because of the loss of stem cells and chondrocytes that occurs with age and the slow in vitro proliferation of chondrocytes from aged cartilage. In this study secondary chondroprogenitor cells were obtained by modulating the phenotype of articular chondrocytes with growth factors and stimulating the proliferation of these cells in culture. Chondrocytes isolated from the articular cartilage of mature New Zealand White rabbits were exposed to a combination of transforming growth factor beta and basic fibroblast growth factor treatment. These cells ceased the production of Collagen II (a marker for the chondrocyte phenotype) and underwent a 136-fold increase in cell number. Next, the cells were placed in high density culture and reexpressed the chondrocyte phenotype in vitro and formed hyaline cartilage in an in vivo assay. Primary chondrocytes obtained from articular cartilage of elderly humans could be manipulated in a similar fashion in vitro. These human secondary chondroprogenitor cells formed only cartilage tissue when assayed in vivo and in tissue bioreactors. This approach may be essential for autologous repair of degenerated articular cartilage in elderly patients with osteoarthritis.  相似文献   

20.
Homeobox genes of the Hox class are required for proper patterning of skeletal elements, but how they regulate the differentiation of specific tissues is unclear. We show here that overexpression of a Hoxc-8 transgene causes cartilage defects whose severity depends on transgene dosage. The abnormal cartilage is characterized by an accumulation of proliferating chondrocytes and reduced maturation. Since Hoxc-8 is normally expressed in chondrocytes, these results suggest that Hoxc-8 continues to regulate skeletal development well beyond pattern formation in a tissue-specific manner, presumably by controlling the progression of cells along the chondrocyte differentiation pathway. The comparison to Hoxd-4 and Isl-1 indicates that this role in chondrogenesis is specific to proteins of the Hox class. Their capacity for regulation of cartilage differentiation suggests that Hox genes could also be involved in human chondrodysplasias or other cartilage disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号