首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用盐酸和硝酸并利用微波消解法完全消解难溶高碳合金钢,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定其中的主要合金元素含量。试验对消解方法、消解试剂的选择及用量、水用量对高硅样品消解的影响、微波消解程序等进行了探讨。最终确立了最佳消解条件为:称取0.2g样品,依次加入10.0mL水、5.0mL盐酸、5.0mL硝酸,在目标温度达到180℃条件下进行微波消解处理。而对于硅质量分数在1.0%以上的高硅难溶高碳合金钢样品,应适当增加水用量。按照实验方法处理多个难溶高碳合金钢样品,并采用ICP-AES测定其中的主要合金元素Si、Mn、Ni、Cr、Mo、V,结果的相对标准偏差(RSD,n=8)为0.23%~4.7%;按照实验方法处理4个难溶高碳合金钢标准样品,并使用ICP-AES测定Si、Mn、Ni、Cr、Mo、V,测定结果与认定值相吻合。  相似文献   

2.
《四川冶金》2021,43(4)
电感耦合等离子体发射光谱法测高碳锰铁中硅含量是较为准确的方法,因高碳锰铁中碳含量一般在7%以上,所以样品的前处理普遍借助微波消解仪进行高温高压消解,未配备微波消解仪的实验室无法便捷地对样品进行前处理。实验使用硝酸与氢氟酸在常温下溶解样品,建立了电感耦合等离子体发射光谱法检测高碳锰铁中硅含量的分析方法。采用国家标准物质绘制检测曲线,通过实验确定:称样量0.1000 g时用20 ml(1+1)硝酸和5 ml氢氟酸溶解样品后过滤定容;在仪器设定的参数条件下,在推荐分析谱线212.412 nm处可得准确测定结果。实验结果显示:硅含量在0.073%~2.38%(质量分数)范围内,硅的检测强度与对应的质量分数呈线性关系,校准曲线的线性相关系数r为0.9999。按照实验方法测定高碳锰铁合金有证标准物质中硅,测定值与标准值的误差均符合国家标准要求。有效解决了高碳锰铁样品前处理依赖微波消解仪的问题,可用于高碳锰铁中硅含量的快速测定。  相似文献   

3.
霍红英 《冶金分析》2018,38(2):65-70
利用X射线衍射法对钒铁酸溶前后的物相进行对比分析,发现酸溶残渣的主要成分为硅铝氧化物,因此可以使用混酸、在高压下提高反应温度的微波消解技术处理样品。采用硝酸、盐酸、氢氟酸混合酸并使用微波消解两步升温法处理样品,选择Si 251.611nm、Al 394.401nm、Mn 257.610nm、P 178.284nm、As 189.042nm、Cu 324.754nm、Ni 231.604nm为分析谱线,采用基体匹配法绘制校准曲线消除基体效应的影响,使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定硅、铝、锰、磷、砷、铜、镍,从而建立了钒铁中硅、铝、锰、磷、砷、铜、镍等杂质元素的分析方法。各待测元素校准曲线的线性相关系数r均大于0.9995;方法中各元素检出限为0.0001%~0.0013%(质量分数)。方法应用于两个钒铁标准样品中硅、铝、锰、磷、砷、铜、镍测定,结果的相对标准偏差(RSD,n=8)不大于4%,测定值与认定值相符合。  相似文献   

4.
熔融制样-X射线荧光光谱法(XRF)测定合金样品,需重点解决样品前处理中合金样品侵蚀铂-黄金坩埚的难题。实验以无水四硼酸锂为熔剂,过氧化钡、碳酸锂为氧化剂,建立了熔融制样-X射线荧光光谱法测定锰铁、硅锰合金中锰、硅、磷含量的方法。实验方法采用低温预氧化熔融制样技术,解决了锰铁、硅锰合金对铂-黄金坩埚腐蚀的难题;应用碳烧失基和消去项消除了锰铁、硅锰合金中烧失/烧增量对检测结果的影响。试验进一步探讨了稀释比、氧化剂加入量、熔融温度、熔融时间等条件对锰铁、硅锰合金中锰、硅、磷含量的影响,得出最佳试验条件:稀释比(m无水四硼酸锂∶m试样)为7∶0.25;氧化剂量分别为过氧化钡 0.5000g、碳酸锂0.5000g;熔融温度为1100℃;静置熔融时间为150s。锰、硅、磷的方法检出限分别为10、25、18μg/g。在最佳实验条件下分别对锰铁(GSB03-1687-2004)、硅锰合金(GSB03-1316-2000)国家标准样品进行精密度考察,锰测定结果的相对标准偏差(RSD)分别为0.088%和0.053%(锰),0.35%和1.1%(硅),2.9%和1.2%(磷)。对于锰铁、硅锰合金实际样品,实验方法与国标方法的测定结果一致性较好,能满足常规分析要求。  相似文献   

5.
镍基合金耐蚀性优良,但难以溶解。实验使用盐酸-硝酸-氢氟酸并采用微波消解法消解样品,选择Si 288.158 nm、Cr 267.716 nm、B 249.678 nm为分析谱线,选用基体匹配法消除基体效应的影响,采用自动匹配法校正谱线干扰,并稀释溶液从而扩大铬元素的测定范围,建立了微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定镍基合金中硅、铬、硼的方法。硅在0.1%~2.0%(质量分数,下同)、铬在0.1%~2.0%、硼在0.01%~0.1%范围内,各元素发射强度与其质量分数呈线性关系,校准曲线的线性相关系数均不小于0.999 4,各元素检出限不大于0.000 2%。按照实验方法测定镍基合金样品中硅、铬、硼,结果的相对标准偏差(RSD,n=6)为0.70%~1.8%。方法应用于镍基合金标准样品的测定,测定结果与认定值相符。  相似文献   

6.
建立了微波消解分解样品,电感耦合等离子体质谱法测定钢铁及合金中总铝和总硼的方法。采用自制的提纯装置提纯氢氟酸。借助微波消解炉,用3mL盐酸、1 mL硝酸和1 mL氢氟酸(1+1),在适宜的压力和温度下消解可将样品消解完全。铍、钪随仪器参数波动引起的信号变化规律与硼、铝的相同。以被测样品主量元素和样品分解的酸进行基体匹配,采用Be和Sc内标补偿仪器漂移和校正基体效应。用本法测定样品中总铝和总硼,快速、简便、精密度好,测定结果与认定值符合较好,适于测定钢铁及合金中质量分数为0.0001%~0.1%总铝和总硼。  相似文献   

7.
菱镁矿中镁、钙、硅、铁、铝、钾、钠、锰、钛、磷等10种主量元素含量范围相差较大,同时分析多元素比较困难。使用盐酸-硝酸-氢氟酸酸溶体系并采用微波消解法消解样品,并选择钇为内标元素,采用耐氢氟酸进样系统的电感耦合等离子体原子发射光谱法(ICP-AES)测定了菱镁矿中镁、钙、硅、铁、铝、钾、钠、锰、钛、磷等10种主量元素。各元素校准曲线线性相关系数均大于0.999;方法检出限为0.000 5%~0.028%。按照实验方法测定5种菱镁矿成分分析标准物质中镁、钙、硅、铁、铝、钾、钠、锰、钛、磷,结果的相对标准偏差(RSD,n=6)为0.35%~4.9%,且与认定值相一致。按照实验方法测定菱镁矿实际样品中10种元素,与重量法测定硅、滴定法测定镁及敞口酸溶-ICP-AES测定其他8种元素进行方法比对,结果无显著性差异。微波消解方式用酸量小,不引入杂质、同时保留了硅在溶液中,解决了菱镁矿中硅与其他主量元素不能同时测定的问题,内标法的使用提高了高含量镁测定的精密度,为菱镁矿的快速准确测定提供了新的途径。  相似文献   

8.
荚江霞  陆军  陆尹 《冶金分析》2016,36(5):58-63
使用王水并利用微波消解的方式处理样品,微波消解采用分步升温的方法,第1步升温5 min到120 ℃,维持6 min;第2步再升温5 min到180 ℃,并保持6 min。选择Si 251.612 nm、Mn 293.930 nm、P 213.618 nm、Cr 206.149 nm、Cu 324.754 nm、Co 238.892 nm、Ni 221.647 nm为分析线并设置合适的背景扣除位置,采用基体匹配法绘制校准曲线可消除基体效应的影响,利用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定硅、锰、磷、铬、铜、钴、镍,建立了镍铁合金中硅、锰、磷、铬、铜、钴、镍的测定方法。各待测元素校准曲线的线性相关系数均大于0.999 5;镍铁中各元素的检出限为0.000 9%~0.003%(质量分数)。方法应用于镍铁合金标准样品JSS 760-3中硅、锰、磷、铬、铜、钴、镍的测定,结果与认定值相符,结果的相对标准偏差(RSD,n=10)为0.36%~5.2%。  相似文献   

9.
采用硅锰及锰铁的标准样品,以一定比例人工合成校准样品,绘制校准曲线,建立了X射线荧光光谱法(XRF)测定硅锰合金中硅、锰、磷的方法,各元素的检出限分别为0.015 3%、0.018 9%、0.002 9%。为避免硅锰合金样品对铂金坩埚的腐蚀问题,选用碳酸锂和过氧化钠分步氧化硅锰合金试样,讨论了熔剂、氧化剂的选择及预氧化的操作方式。试验结果表明:将试样与四硼酸锂熔剂以1∶30的质量比混合,加入5滴400 g/L溴化铵溶液做脱模剂,制得试样在熔剂中分散均匀的玻璃片,能同时适用于高低含量组分的测定。当硅、锰、磷质量分数分别为24.58%、65.20%、0.190%时,10次测量结果的相对标准偏差(RSD)分别为0.29%、0.14%和0.92% 。方法用于硅锰合金样品中硅、锰、磷的测定,与湿法测定值吻合较好,能满足常规分析要求。  相似文献   

10.
提出了微波消解电感耦合等离子体原子发射光谱(ICP-AES)同时测定酸再生氧化铁粉中铝、硅、硫、钙、锰、硼、钛、镁、钾、钠、磷、铬、镍、铜等14种元素的分析方法。采用微波消解技术消解酸再生氧化铁粉,考察了微波消解时间、功率和压力对消解效果的影响,选择了最佳工作参数。通过ICP-AES仪器的FACT软件,选择合适的分析谱线,避免了基体干扰和元素之间的光谱干扰。同时对溶样条件、基体影响的机理等进行了探讨。微波消解方法测量结果的回收率及相对标准偏差(n=6)均优于常规溶样方法。对酸再生氧化铁粉样品的测定结果与传统湿法分析的结果相一致。  相似文献   

11.
低合金钢中镍的溶样方法改进   总被引:1,自引:0,他引:1       下载免费PDF全文
采用微波消解技术消解低合金钢样品,考察了微波消解时酸的种类以及微波消解时间、功率和压力对消解效果的影响,选择了最佳工作参数。利用萃取法分离,消除了铜、铁、锰离子的干扰,用分光光度法测定低合金钢中镍含量。常规溶样方法测定结果的相对误差小于5.0%,相对标准偏差小于4.7%;而微波消解方法的相对误差小于3.1%,相对标准偏差小于4.0%。实验结果表明,该法准确、省时、样品损失少、污染少,是目前较为理想的样品处理方法。  相似文献   

12.
使用盐酸-硝酸-氢氟酸并采用微波消解法处理样品,选择Al 308.215nm和Si212.412nm作为分析线,基体匹配法配制标准溶液系列绘制校准曲线,使用电感耦合等离子体原子发射光谱法(ICP-AES)测定铝和硅,从而建立了微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)测定铁硅铝磁芯中铝和硅的方法。结果表明,铝和硅的质量分数分别为1.00%~9.00%和2.50%~12.50%时与其发射强度呈线性,线性相关系数均不小于0.999 4;方法中铝和硅的检出限分别为0.020%和0.021%(质量分数)。实验方法应用于铁硅铝磁芯样品中铝和硅的测定,结果的相对标准偏差(RSD,n=6)为1.4%~2.2%;将测定结果与滴定法(测定铝)和重量法(测定硅)的测定结果进行比对,二者相吻合。  相似文献   

13.
镍基合金是一种在高温下具有良好耐腐蚀性及相当高强度的合金,在其成分分析中,存在样品难溶、分析测定不准等困难。研究比较了在不同混酸种类和配比条件下,采用传统湿法消解和现代微波消解2种溶样方式处理样品的不同。试验发现,采用HCl-HNO3(10∶1)(体积比,下同)可将难溶镍基合金样品消解澄清,替代使用强腐蚀性HF作为助溶剂的消解方法。同时,考察了以Ni(60%)、Cr(22%)(质量分数,下同)为基体制作工作曲线对测定Co、Fe、Mn、Ti等元素的影响。结果表明,用少量HCl-HNO3(10∶1)混酸为溶剂,采用微波消解处理样品时酸消耗量小、消解用时短、测定结果准确。用多元素混合标准系列溶液制作工作曲线,测定结果扣除镍铬基体空白后,与Inconel标准物质BS 625E(UNS Number N06625)认证值对比,相对误差在-10.612 9%~8.709 7%范围内,相对标准偏差为0.062 9%~5.686 4%。该法可准确测定难溶镍基合金中质量分数范围为0.001%~5%的Co、Fe、Mn、Ti等元素。研究结果可为冶金企业技术检测部门...  相似文献   

14.
罗海霞  王强 《冶金分析》2022,42(2):40-46
钴铬钨系合金常温常压下酸溶分解较为困难。实验利用微波消解提高溶样时的温度和压力,在盐酸、硝酸和氢氟酸介质中使样品充分消解。样品溶解后,定容分取,加入酒石酸溶液,在稀盐酸介质中,以W 207.912 nm为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定钴铬钨系合金中钨的方法。结果表明:共存元素对测定结果基本没有影响。在选定的操作条件下,校准曲线的线性相关系数为0.999 9;钨的检出限为0.002 3%(质量分数)。按照实验方法测定钴铬钨系合金粉末中钨,结果的相对标准偏差(RSD,n=11)小于3%,加标回收率为97.4%~102.3%。  相似文献   

15.
探讨了火花源原子发射光谱法测定FeCuNbSiB合金中铜、铌、硅和硼的分析条件。在高纯氩气(φ≥99.999%)流量为180 L/h和氩气冲洗时间为4 s,预燃(HEPS)时间为6 s,积分时间为8 s(硅)、8 s(铌)、3 s(硼)和3 s(铜)的最佳分析条件下,用自制的标准样品绘制了铜、铌、硅和硼的校准曲线。在校正了共存元素干扰影响后,拟合校准曲线。其中,用B 345.1 nm/Fe 360.7 nm 分析线对绘制高含量硼的校准曲线,硼的分析范围为0.94%~3.37%;用Nb 319.5 nm/Fe 297.1 nm分析线对绘制铌的校准曲线,使仪器软件中已建立的钢中铌的校准曲线得到了延伸,铌的分析范围扩展为0.002 0%~7.16%;用Si 390.6 nm/Fe 281.3 nm分析线对和Cu 212.3 nm/Fe 216.2 nm 分析线对分别绘制了硅和铜的校准曲线,使仪器软件中已建立的钢中硅和铜的校准曲线得到了充实,硅的分析范围为0.010 0%~19.40%,铜的分析范围为0.001 3%~3.95%。用此方法测定了FeCuNbSiB合金分析样品中铜、铌、硅和硼含量,其测定结果的相对标准偏差(n=8)小于1.0%,所得的分析结果与用重量法和电感耦合等离子体原子发射光谱法(ICP-AES)的测定值一致,并且实现了分析样品的一次激发可同时测定FeCuNbSiB合金分析样品中铜、铌、硅和硼以及其他合金元素。  相似文献   

16.
基于对试样检测周期的要求,实验采用可溶性淀粉为稀释剂兼粘结剂进行压片制样,选取与待测试样组成、结构及粒度相似的具有一定梯度含量的硅锰合金试样系列,经国家标准方法确定硅、锰和磷值后作为校准样品,采用能量色散X射线荧光光谱法测定硅锰合金中硅、锰、磷。通过正交实验,确定优化的制样条件为:称取4.0000g样品及0.4000g可溶性淀粉,混合均匀后,于30t的压力压制样片,所得样片强度适中、均匀光滑,重现性好。精密度试验结果表明,硅锰合金中硅、锰、磷测定结果的相对标准偏差(RSD,n=10)分别为0.59%、0.19%和5.7%;正确度试验结果表明,实验方法的测定值与国标方法相一致,满足冶炼现场快速检验的需要。  相似文献   

17.
铝在锰铁合金、锰硅合金、金属锰中属于有害元素,在后续钢铁冶炼中易形成夹杂物而使钢铁材料变脆,为此建立了铬天青S分光光度法测定锰铁合金、锰硅合金和金属锰中铝的方法。以硝酸、氢氟酸分解样品,利用高氯酸冒烟提供高温和强氧化作用,硅与氢氟酸反应生成四氟化硅挥发除去,碳被氧化分解或生成微小碳粒从而达到铝完全释放。在酸性溶液中加入铬天青S显色剂,然后调节溶液pH值为5.7~6.0,在室温条件下静置30min,即可使铝完全生成稳定的络合物,达到最佳分析效果。实验结果表明,通过在系列标准溶液中进行锰、铁基体匹配,同时在系列标准溶液和样品测量溶液中加入EDTA-Zn作掩蔽剂,并针对不同锰、铁含量的样品显色溶液,以氟化铵络合铝抑制其显色,配制专门的参比溶液,再将测得的吸光度减去试剂空白显色吸光度,可以消除锰、铁基体效应的影响。在铝的校准曲线线性范围内,线性相关系数可达0.9998,铝的检出限为0.0075%,定量限为0.025%。实验方法用于锰铁合金、锰硅合金、金属锰中铝的测定,结果的相对标准偏差(RSD,n=11)为6.3%~8.1%,回收率为94%~107%。按照实验方法测定锰硅合金标准样品YSB C 26605-2013中铝,测定结果与认定值相吻合;向锰硅合金标准样品YSB C 26605-2013中加铝标准溶液配制锰硅合金合成样品,按照实验方法进行测定,结果与参考值基本一致。选择6个实验室按照实验方法对锰铁合金、锰硅合金中铝进行测定,结果的相对标准偏差为2.0%~4.6%,平均值与电感耦合等离子体质谱法基本一致;按照实验方法测定金属锰中铝,测定结果与电感耦合等离子体质谱法相符。  相似文献   

18.
铝在锰铁合金、锰硅合金、金属锰中属于有害元素,在后续钢铁冶炼中易形成夹杂物而使钢铁材料变脆,为此建立了铬天青S分光光度法测定锰铁合金、锰硅合金和金属锰中铝的方法。以硝酸、氢氟酸分解样品,利用高氯酸冒烟提供高温和强氧化作用,硅与氢氟酸反应生成四氟化硅挥发除去,碳被氧化分解或生成微小碳粒从而达到铝完全释放。在酸性溶液中加入铬天青S显色剂,然后调节溶液pH值为5.7~6.0,在室温条件下静置30min,即可使铝完全生成稳定的络合物,达到最佳分析效果。实验结果表明,通过在系列标准溶液中进行锰、铁基体匹配,同时在系列标准溶液和样品测量溶液中加入EDTA-Zn作掩蔽剂,并针对不同锰、铁含量的样品显色溶液,以氟化铵络合铝抑制其显色,配制专门的参比溶液,再将测得的吸光度减去试剂空白显色吸光度,可以消除锰、铁基体效应的影响。在铝的校准曲线线性范围内,线性相关系数可达0.9998,铝的检出限为0.0075%,定量限为0.025%。实验方法用于锰铁合金、锰硅合金、金属锰中铝的测定,结果的相对标准偏差(RSD,n=11)为6.3%~8.1%,回收率为94%~107%。按照实验方法测定锰硅合金标准样品YSB C 26605-2013中铝,测定结果与认定值相吻合;向锰硅合金标准样品YSB C 26605-2013中加铝标准溶液配制锰硅合金合成样品,按照实验方法进行测定,结果与参考值基本一致。选择6个实验室按照实验方法对锰铁合金、锰硅合金中铝进行测定,结果的相对标准偏差为2.0%~4.6%,平均值与电感耦合等离子体质谱法基本一致;按照实验方法测定金属锰中铝,测定结果与电感耦合等离子体质谱法相符。  相似文献   

19.
ICP-AES测定矿物中硫的前处理方法的对比   总被引:2,自引:0,他引:2  
李清昌  薛静 《有色矿冶》2013,(1):57-58,62
应用ICP-AES法对矿物中的硫元素进行测定,对封闭的微波消解和敞开的逆王水消解两种前处理方法进行对比。两种方法的准确性都很好,微波消解法相对标准偏差(n=10)在0.90%~2.66%之间,逆王水消解法相对标准偏差(n=10)在1.33%~3.54%之间。将两种前处理方法的消解时间、仪器设备、环境污染等因素进行对比分析和总结,微波消解法适于小批量、精确度要求较高的研究工作,逆王水消解法适用于需要大批量处理样品的生产单位。  相似文献   

20.
刘烽  吴骋  吴广宇  俞璐  胡清  徐成 《冶金分析》2018,38(5):78-82
目前髙镍铸铁已广泛用于汽车发动机等产品上,对于材料中各元素的分析,传统化学分析方法已无法满足快速检测的需求。试验探讨了不同溶解方式的溶样效果,优选了王水并采用微波消解,冷却后在消解液中滴加氢氟酸的溶解方法,测定过程采用钇内标法进行检测,从而实现了使用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定高镍铸铁中硅、锰、磷、铬、镍、铜等元素的方法。在选定的仪器工作条件下,各元素的校准曲线线性相关系数均大于0.9999,各元素的检出限为0.0002%~0.0036%。实验方法用于高镍铸铁实际样品中硅、锰、磷、铬、镍、铜的测定,结果的相对标准偏差(RSD,n=8)为0.73%~5.0%;按照实验方法测定髙镍铸铁标准样品中硅、锰、磷、铬、镍、铜,结果与认定值相吻合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号