首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Removal of sub-100 nm particles from substrates such as wafers and photo masks is an essential requirement in semiconductor, microelectronics, and nanotechnology applications. The proposed laser-induced plasma (LIP) based approach is an effective technique for removal of sub-100 nm particles, as the minimum tolerable particle on the substrates shrinks to sub-100 nm levels with each technological node. In the current study, our progress in sub-100 nm particle removal is reviewed, and the results of the kinetic theory simulations conducted to understand the dynamics of the gas molecule-nanoparticle interactions excited by the shock front are discussed. It is shown from the simulations and experiments that particles as small as sub-100 nm can be successfully detached. To explain possible mechanisms for the nanoparticle detachment in nanoscale, the concepts of rolling resistance moment and rocking motion are utilized as novel detachment mechanisms. The pressure experiments illustrate that the peak pressure levels achieved with the LIP shock wave fields are below damage thresholds of most substrate materials. The potential of the proposed approach as a practical noncontact, dry, fast, and damage-free method for removal of sub-100 nm particles is discussed.  相似文献   

2.
Submicrometer (0.1–1 μm) polystyrene and alumina particles were removed by single-shot nanosecond 248 nm KrF laser radiation from Si wafer surfaces with or without pre-deposited thin liquid layers. Nearly complete (>90%) single-shot laser cleaning has been achieved for combinations of polystyrene and alumina particles, respectively, with 2-propanol and water used as liquid energy transfer media, while for other combinations cleaning was absent or incomplete. Time-resolved optical microscopy studies have for the first time revealed important transient microscopic interactions between these particles and Si substrates in the pre-deposited micron-thick liquid layers, resulting, in some of these cases, in significantly reduced particle-substrate coupling. The visualization results give insight into microscopic particle removal mechanisms relevant to our laser cleaning experimental conditions, which are discussed along with their theoretical analysis. Theoretical modeling has been performed to interpret these experimental results and to provide insight into microscopic particle removal mechanisms.  相似文献   

3.
The dependence of the shape and size distribution of aggregates of lead zirconate titanate nanoparticles prepared by spray pyrolysis of a sol–gel precursor solution is reported. Decreasing the average heating rate from 300 to 160 °C s−1 in the sub-200 °C section of the reactor decreased the proportion of non-spherical particle aggregates and decreased the maximum size from ~10 to ~5 μm. Microtome sectioning revealed an internal structure composed of <100 nm primary particles. Both solid and hollow particle aggregates were present.  相似文献   

4.
Abstract

We describe experiments using 100 femtosecond pulses of 266 nm light to ablate Cr defects from photomasks with resolution below 100 nm. In addition to the ablative removal of Cr, experiments were carried out to deposit Cr metal onto fused silica substrates using 100 fs, 400 nm light at atmospheric pressure. Multiphoton dissociation of Cr(CO)6 adsorbed on fused silica substrates initiates Cr deposition. The mechanisms for deposition on both transparent (fused silica) and absorbing (Cr metal) substrates are discussed. Finally we describe initial experiments to ablate Cr metal at wavelengths below 200 nm using light generated by frequency mixing of ultrashort, 30 fs pulses in an Ar filled capillary.  相似文献   

5.
Continuous thin films of Pt on (100) SrTiO3 substrates were dewetted to form Pt particles at 1,150 °C, using an oxygen partial pressure of 10?20 atm. After retraction of thick (50 or 100 nm) Pt films, SrTiO3 anisotropic rods, slightly depleted in Ti, were found on the surface of the substrate. Rods did not form after dewetting of thinner (10 nm) Pt films. After dewetting, a ~10 nm thick interfacial phase was found between the Pt and the SrTiO3. The interfacial phase, based on Sr and containing ~25 at% oxygen, is believed to be a transient state, formed due to Ti depletion from the substrate, resulting in a Pt(Ti) solution in the particles. The interfacial phase forms due to the low oxygen partial pressure used to equilibrate the system, and is expected to influence the electrical properties of devices based on Pt–SrTiO3.  相似文献   

6.
As pattern size of semiconductor device becomes less than 20 nm, the removal of particles smaller than 10 nm without pattern damages requires new physical dry cleaning technology. CO2 gas cluster cleaning is an alternative dry cleaning process to meet these cleaning requirements. To demonstrate gas cluster cleaning performance, particle removal efficiency (PRE) and gate structure pattern damages were evaluated. When pressurized and low temperature CO2 gas was passed through a convergence–divergence (C–D) nozzle, high energy CO2 gas clusters were generated at high speed in a vacuum atmosphere. The cleaning force of the CO2 gas cluster is related to the flow rate of the CO2 gas. The optimum CO2 gas flow rate for the particle removal without pattern damage was found to be 6 L/min (LPM). Removal efficiency for 50 nm silica particles was greater than 90%, and no pattern damage was observed on 60 nm poly-Si and a-Si gate line patterns. It was confirmed that the CO2 gas cluster cleaning force could be controlled by the CO2 gas flow rate supplied to nozzle.  相似文献   

7.
In this paper, a method is proposed for modeling explosive‐driven fragments as spherical particles with a point‐particle approach. Lagrangian particles are coupled with a multimaterial Eulerian solver that uses a three‐dimensional finite volume framework on unstructured grids. The Euler–Lagrange method provides a straightforward and inexpensive alternative to directly resolving particle surfaces or coupling with structural dynamics solvers. The importance of the drag and inviscid unsteady particle forces is shown through investigations of particles accelerated in shock tube experiments and in condensed phase explosive detonation. Numerical experiments are conducted to study the acceleration of isolated explosive‐driven particles at various locations relative to the explosive surface. The point‐particle method predicts fragment terminal velocities that are in good agreement with simulations where particles are fully resolved, while using a computational cell size that is eight times larger. It is determined that inviscid unsteady forces are dominating for particles sitting on, or embedded in, the explosive charge. The effect of explosive confinement, provided by multiple particles, is investigated through a numerical study with a cylindrical C4 charge. Decreasing particle spacing, until particles are touching, causes a 30–50% increase in particle terminal velocity and similar increase in gas impulse. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Monodispersed nanoporous silica spherical particles with the particle size ranges from 0.01 μm to 1.5 μm were successfully prepared by the Stöber method combined with supramolecular templating approach. The particles formed from homogeneous solutions containing tetraethoxysilane, cetyltrimethylammonium chloride, methanol, and aqueous ammonia solution at room temperature. In the present study, methanol/tetraethoxysilane ratio was the factor to control the particle size. With increasing the methanol/tetraethoxysilane ratios from 1,125 to 6,000, particle size decreased from 1.5 μm to 0.01 μm. The calcination of the particles resulted in the spherical porous silicas with the average pore sizes of around 2.0 nm irrespective of the particle size. The particle morphology retained after the calcination.  相似文献   

9.
Using numerical simulations, the effect of the compressibility of air on the flow pattern of particles and pressure drop in the presence of particles during horizontal pneumatic transport operating under negative pressure was examined. The length and inside diameter of the pipeline were 30 m and 40 mm, respectively, and the chosen particles (4 mm in diameter) had densities of ρp = 1000 and 2000 kg/m3. The mean air velocities at pipe the inlet were Uinlet = 19, 22, and 28 m/s, and the range of the mass flow rate ratios of particle to air, μ, was varied up to 2.0. For a given inlet air velocity, the difference in the flow pattern between compressible and incompressible flow calculation is generally small. For ρp = 1000 kg/m3 particles the additional pressure drop in compressible flow increases when μ is above 0.5 and Uinlet is 28 m/s, μ is above 1.3 and Uinlet is 22 m/s, and μ is above 1.5 and Uinlet is 19 m/s. In these cases, the particle flow pattern is homogeneous. For ρp = 2000 kg/m3 particles, the pressure drop increases only when μ is above 1.5 and Uinlet is 28 m/s. The difference is not noticeable when the particle flow pattern is heterogeneous. Also, the difference in the additional pressure drop is much larger during homogeneous flow than heterogeneous flow.  相似文献   

10.
The present paper describes the synthesis of silica nanoparticles via the sol–gel method assisted by reverse micelle microemulsion, using reagents as Triton x-100/Cyclohexane/Methanol/H2O, and also the effect on particle size of some synthesis parameters such as the water-surfactant molar ratio (R), Co-surfactant-surfactant (ρ), and synthesis time (t). The structure, morphology, and size of the silica nanoparticles were characterized with transmission electron microscopy and scanning electron microscopy. A variation of ρ = [Methanol]/[Triton X-100] affects the size, morphology, and dispersion of the particles. An increase in the concentration of methanol produces a decrease in particle size. The condition that resulted in smaller particle size, better spherical morphology, and monodispersity was when ρ = 7.6, which generated an approximate size of 83 ± 7 nm. The parameter R = [H2O]/[Triton X-100] affects not only the size of the particles, but also their morphology. Higher values of R result in a decrease in the amount of catalyst present in the interior of the micelle, but in turn generate a greater amount of water, which results in a decrease in particle size and polydispersity. Time is a parameter that directly affects the size of the silica particles. The optimal time for the synthesis of nanoparticles was 2 h, resulting in silica nanoparticles of 25 ± 3 nm, monodisperse, with spherical morphology and without the presence of agglomerations.  相似文献   

11.
Precipitation processes are commonly used in industry to efficiently produce large amounts of solids. During these processes a fast formation of colloidal structures is often followed by an aggregation process if the systems are unstable. In many cases these aggregates are highly porous networks that may subsequently reorganize to form a more compact particulate material. In this article, the reorganization process is theoretically examined for fractal aggregates. Two different mechanisms are proposed. For the first mechanism, particles are selected for diffusion moves inside the cluster based on their distance to the center of mass. In a second mechanism, the detachment of primary particles is described by an Arrhenius type expression. The detachment probability is assumed to be linearly dependent on the number of nearest neighbors of the primary particle. This last mechanism is demonstrated to be valid for the restructuring of silica aggregates. The obtained activation energy of 4.87 × 10?21 J for breaking a bond between neighboring particles is similar to values found in secondary minimum coagulation.  相似文献   

12.
Particle flowability can be improved by admixing particles smaller than the original particles (main particles). However, the mechanisms by which this technique improves flowability are not yet fully understood. In this study, we examined compressed packing in a particle bed, which is affected by particle flowability. To estimate the mechanism of improvement, we investigated the effects of the main particle diameter on the improvement of compressed packing fractions experimentally.The main particles were 397 and 1460 nm in diameter and the admixed particles were 8, 21, 62, and 104 nm in diameter. The main and admixed particles were mixed in various mass ratios, and the compressed packing fractions of the mixtures were measured. SEM images were used to analyze the coverage diameter and the surface coverage ratio of the admixed particles on the main particles. The main particle packing fraction was improved as the diameter ratio (=main particles/admixed particles) increased. This was explained by a linked rigid-3-bodies model with leverage. Furthermore, the actual surface coverage ratio at which the most improved packing fraction was obtained decreased with increasing main particle diameter. This was explained by the difference in the curvature of the main particle surface.  相似文献   

13.
Distinct element model (DEM) simulations of energy dissipation in vibrated particle beds are compared with experimental results. DMX, a 3-D DEM of polydisperse spheres in an open-top vibrating cylinder, was used. Simulations were conducted for vibrating mono and binary particle systems. Energy dissipation rate per vibration cycle at different frequencies and maximum accelerations was examined. Experimental data from previous publications were compared with the simulations. Reasonable qualitative agreement was achieved on scaled-up (by number of particles) simulation results. These show that DEM can capture the harmonic phenomena, showing resonance in dissipation at several frequencies at low accelerations (<1 g). At high acceleration levels (>1 g) no harmonics are observed. At low frequency levels where the vibration amplitudes are higher, the DEM reproduces experimental energy dissipation levels better than a continuum viscoelastic model. For a larger diameter vessel (fewer layers and decreased wall effects) the resonant dissipation frequency increases. Quantitative agreement between DMX predictions and the experiments is reasonable given the scatter in the experimental results; at high frequency there is at least an order of magnitude difference in the rate of dissipation, which was also observed in viscoelastic model predictions. Results show that even with using only 100 particles the agreement between DMX predictions and the experiments is qualitatively reasonable. This will enable the examination of many more situations and combinations as it can be carried out relatively “fast.”  相似文献   

14.
Recent studies demonstrated that laser-induced spray jet cleaning (LSJC) based on optical breakdown of a water droplet is an effective way to remove nanoscale contaminant particles from solid surfaces with use of small amount of water. In this work, an LSJC process using isopropyl alcohol (IPA) as a non-water cleaning agent was developed. High-speed spray jet composed of atomized micro droplets of IPA was generated by inducing optical breakdown in the droplet. The particle removal efficiency was slightly lower than that of the LSJC using water droplets but it was high enough to remove 30 nm polystyrene latex particles completely and 10 nm gold particles partially from silicon wafers. Optical microscopy and secondary ion mass spectrometry confirmed that the LSJC process using IPA caused no watermark problem commonly observed in water-based cleaning processes without a special rinsing and drying process.  相似文献   

15.
We report a series of measurements aimed at understanding the dynamics of microparticle detachment from surfaces. Microparticles were adhered to AFM cantilever tips and load/displacement curves were obtained while the particles were repeatedly attached and detached from the surface with frequencies ranging from 1 to 30 Hz. Particles ranging in size from 1 to 30 micrometers and composed of alumina and polystyrene were studied. For each particle studied, a decrease in the pull-off force was consistently observed with increasing measurement frequency, indicating a dynamic effect that is not accounted for by equilibrium adhesion models. We present a lumped mass model of the canitilever/particle/surface system to definitively rule out the possibility that bulk inertial effects within the particle or cantilever may be responsible at these time scales. Furthermore, we ensured dry conditions for each experiment making it unlikely that humidity effects, such as water bridge formation, could have been responsible. Although we have not pinpointed the physical nature of the dynamics, we offer the possibility that energy dissipation mechanisms at the particle/surface interface may cause dynamic effects during microparticle attachment or detachment on time scales similar to those of the present experiments.  相似文献   

16.
Densification of cuboidal micrometer-sized lithium fluoride particles as ductile ceramic by spark plasma sintering (SPS) was investigated. Specimens were fabricated at different pressures and temperature conditions, ranging from 2 to 100 MPa at 500 °C and from 200 to 700 °C under 100 MPa of applied pressure, respectively. Dense specimens of 99 % relative density were fabricated by heating to 500 °C under constant pressure of 100 MPa. The densification showed first compaction by particle rearrangement, followed by plastic deformation via dislocation glide. Hot-pressing models were used to describe the densification by considering the temperature dependences of the yield stress, the strain hardening behavior and coefficients, and the pore size and shape dependences on the applied stress. A good agreement was found between the experimental and the theoretical densification curves. At low pressure of 2 MPa, the densification occurs by particle sliding, assisted by viscous flow at their surfaces, and local plastic deformation at the particle contacts, due to the intensified local stress. Finally, the micrometer-sized structural features and the contiguity achieved by plastic deformation at the start of spark plasma sintering (SPS) nullify any field effects in this model system at higher pressures; good agreement was obtained with expected conventional hot pressing.  相似文献   

17.
The flow field and filtration efficiency of electrostatically charged micro-channel filters under cross-flow conditions were modeled. In our simulations, the fluid flows tangentially to the filter face (cross-flow). Particles with diameters larger than 2 μm were considered in this study, hence, the effects of Brownian motion were not included in the simulations. The influence of particle size, pressure drop, and electrostatic charge on the filtration efficiency was investigated. Measurements from performing electrostatic force microscopy (EFM) on the monolith sample confirmed the presence of charge and gave a qualitative measurement of the charge distribution. Results from the flow simulations indicate that the electrostatic forces increased the particle capture efficiency only at lower pressure drop. At higher pressure drops, electrostatic forces did not significantly increase the capture efficiency of the particles. Also, the capture efficiency of relatively small particles is found to be more dependent on the pressure drop across the filter than that of larger particles.  相似文献   

18.
A compact electrostatic nanoparticle sampler has been developed to support the offline analysis of nanoparticles via electron microscopy. The basic operational principle of the sampler is to electrically charge particles by mixing nanoparticles and unipolar ions produced by DC corona discharge, and electrostatically collecting charged particles. A parametric study was first performed to identify the optimal operating condition of the sampler: a total flow rate (i.e., the sum of the particle and ion carrier flow rates) of 1.0 lpm, an aerosol/ion carrier flow rate ratio of 1.0, and a collection voltage of 4.5 kV. Under the above condition, the sampler achieved a collection efficiency of more than 90 % for particles ranging from 50 to 500 nm. The effect of particle material on the sampler’s performance was also studied. The prototype had lower collection efficiencies for oleic acid particles than for sodium chloride particles in the size range from 50 to 150 nm, while achieving a comparable efficiency in the size range large than 150 nm. Effects of particle diameter, particle material, and total flow rate on the sampler’s collection efficiency are explained by the particle charging data, i.e., charging efficiencies and average charges per particle.  相似文献   

19.
In this study, three-dimensional heterogeneous and homogenized finite element models are used to predict the indentation response of particle reinforced metal matrix composites (PRMMCs). The matrix is assumed to have elasto-plastic behavior whereas the particles (uniform in size and spherical in shape) are assumed to be harder than the matrix, and possess linear elastic behavior. The particles (25 % by volume) are randomly distributed in the metal matrix. Two modeling approaches are used. In the first approach, the PRMMC is fully replaced by an equivalent homogenous material, and its material properties are obtained through homogenization using representative volume element approach under periodic boundary conditions. In second approach, a small cubical volume under the indenter is modeled as heterogeneous material with randomly distributed particles, whereas the remaining domain is assigned equivalent material properties obtained through homogenization. The elastic material properties obtained through simulations are found within Hashin–Shtrikman bounds. A suitable size cubical volume consisting of heterogeneities under the indenter is established by considering different cubical volumes so as to capture the actual indentation response. The simulations are also carried out for different particle sizes to establish a suitable particle size. These simulations show that the second modeling approach yields harder indentation response as compared to first modeling approach due to the local particle concentration under the indenter.  相似文献   

20.
We fabricated nanosized KMgF3 single crystals via a dry pulsed laser ablation process using femtosecond laser pulses. The sizes, shapes, and crystallographic properties of the crystals were evaluated by transmission electron microscopy (TEM). Almost all of the particles were spherical with diameters of less than 100 nm, and they were not highly agglomerated. Selected-area electron diffraction and high-resolution TEM analyses showed that the particles were single crystals. Particle diameter was controlled within a wide range by adjusting the Ar ambient gas pressure. Under low gas pressures (1 and 10 Pa), relatively small particles (primarily 10 nm or less) were observed with a high number density. With increasing pressure, the mean diameter increased and the number density drastically decreased. Vacuum-ultraviolet cathodoluminescence was observed at 140–230 nm with blue shift and broadening of spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号