首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we report enhanced antimicrobial properties of 29 and 23 nm silver nanoparticles (Ag NPs) obtained by electrochemical synthesis in poly(amide-hydroxyurethane) media. Antibacterial activity assessed by disk diffusion method indicates that silver nanoparticles produced inhibition zones for both Escherichia coli and Staphylococcus aureus depending on silver concentration. The bacterial growth curve performed in the presence of silver nanoparticles showed a stronger antibacterial effect at lower concentrations than those described in the earlier reports. The effect was both dose and size dependent and was more pronounced against Gram negative bacteria than Gram positive one. The smallest Ag NPs used had a bactericidal effect resulting in killing E. coli cells. Scanning electron microscopy analysis indicated major damage and morphology changes of the silver nanoparticles treated bacterial cells. The major mechanism responsible for the antibacterial effect probably consists in clusters formation and nanoparticles anchorage to the bacterial cell surface.  相似文献   

2.
目的 探究室温条件下不同还原剂以及其他实验助剂在化学还原纳米银过程中对其颗粒粒径、尺寸分布和形貌的影响。方法 以抗坏血酸为还原剂,聚乙烯吡咯烷酮(PVP)为分散剂,柠檬酸钠为保护剂和第2还原剂,选择葡萄糖和硼氢化钠作对照,在室温下通过化学还原的方法来制备纳米银颗粒。通过马尔文激光粒度仪、紫外–可见光谱(UV–vis)、透射电镜(TEM)等对所制备纳米银进行表征。结果 采用抗坏血酸作为还原剂时,通过调控抗坏血酸体积(0.2 mL),固定柠檬酸钠和PVP体积分别为0.5、0.6 mL,制备出粒径较小(平均粒径为56 nm)且尺寸分布较均一的球形纳米银;采用葡萄糖和硼氢化钠作还原剂时纳米银颗粒尺寸过大(平均粒径分别为216nm和189nm)。结论 采用抗坏血酸作为还原剂,调控柠檬酸钠、PVP等实验参数在最佳范围,更容易制备出球形度好、粒径小的均匀纳米银溶液。  相似文献   

3.
The paper reports a green chemistry approach for the synthesis of silver nanoparticles (AgNPs) using hypericin-rich shoot cultures of Hypericum hookerianum as reducing agent. Normal green shoot cultures deficient in hypericin and red-pigmented shoot cultures rich in hypericin (3.01% DW) were raised in Murashige and Skoog nutrient medium containing 1.0 mg/L kinetin (KIN) and 0.2 mg/L naphthaleneacetic acid (NAA), respectively. Dried powder extracts of whole shoots were used for AgNPs formation. The effect of temperature on the formation of AgNPs is investigated. The nanoparticles obtained were characterised using UV–Vis spectroscopy, field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX) and X-ray diffraction (XRD) analyses. The UV–Vis spectra of AgNPs gave surface plasmon resonance (SPR) at 440 nm. The synthesised AgNPs were effective against different multidrug-resistant human pathogens such as Bacillus subtillis (Gram positive) and Pseudomonas aeruginosa (Gram negative) species. Further, the effect of hypericin concentration on anti-bacterial activity was investigated and was found to increase with increase in concentration.  相似文献   

4.
In the present study, a simple mathematical model has been developed for synthesis of silver nanoparticles. The silver nanoparticles have been synthesized in ternary reverse microemulsion of cyclohexane/water/sodium dodecyl sulfate (SDS). The silver nanoparticles were produced by reaction between silver nitrate in the water droplet core of one microemulsion and hydrazine as reducing agent in the water droplet core of another microemulsion. The dynamic behavior of process was modeled on mass balance equations which were solved using the finite difference method. The kinetic parameters of the critical number size (N crit ), rate order of nucleation, and growth constants were estimated by minimizing the difference between the average particle size predicted by model and those obtained by experiments. The UV-Vis absorption spectra, transmission electron microscopy (TEM), x-ray diffraction (XRD), x-ray photoelectron spectroscopy (XPS), and dynamic light scattering (DLS) were used to analyze the structure and particle size distribution of silver nanoparticles.  相似文献   

5.
The development of reliable, eco-friendly protocol for the synthesis of nanomaterials is a challenging issue in the current nanotechnology. In the present study, we reported an environmentally benign and rapid method for biogenesis of silver nanoparticles using Gram-positive bacterium Lactobacillus acidophilus which acts both as reducing and capping agent. It was observed that the culture filtrate reduced silver ions into silver nanoparticles within 24 hrs of reaction time under room temperature. The UV–Vis spectrum shows the absorbance maximum at 434 nm, which is a characteristic of surface plasmon resonance of silver. X-ray diffraction analysis showed that the nanoparticles were of face-centred cubic crystalline structure. The presence of stable spherical-shaped silver nanoparticles in the size range of 4–50 nm was determined using the transmission electron microscopy analysis. Further, these nanoparticles showed effective antibacterial activity towards Klebsiella pneumoniae. The mechanism of the silver nanoparticle bactericidal activity is discussed in terms of its interaction with the cell membrane of bacteria by causing cytolysis and leakage of proteins and carbohydrates.  相似文献   

6.
The study explored biological synthesis of metallic silver nanoparticles (AgNPs) from the less explored non‐pathogenic coprophilous fungus, sterile mycelium, PM0651419 and evaluates the antimicrobial efficacy of biosynthesised AgNPs when impregnated in wound fabrics and in combination with six antimicrobial agents. AgNPs alone proved to be potent antibacterial agents and in combination they enhanced the antibacterial activity and spectrum of antibacterials used in the study against a microbiologically diverse battery of Gram positive, Gram negative and multidrug‐resistant bacteria. AgNPs impregnated on the wound dressings established their antibacterial activity by significantly reducing the bacterial load of pathogenic bacteria like Staphylococcus aureus and Bacillus subtilis e stablishing potential as effective antimicrobial wound dressings for treatment of polymicrobial wound infections. This study presents the first report on the potential of biosynthesis of AgNPs from the under explored class of coprophilous fungi. Their promise to be used in wound dressings and as potent antibacterials alone and in combination is evaluatedInspec keywords: silver, nanoparticles, nanofabrication, nanomedicine, biomedical materials, microorganisms, antibacterial activity, wounds, fabricsOther keywords: antibacterial activity, coprophilous fungus PM0651419, biological synthesis, metallic silver nanoparticles, nonpathogenic coprophilous fungus, sterile mycelium, antimicrobial efficacy, biosynthesised AgNPs, wound fabrics, microbiologically diverse battery, Gram positive bacteria, Gram negative bacteria, multidrug‐resistant bacteria, wound dressings, bacterial load, pathogenic bacteria, Staphylococcus aureus, Bacillus subtilis, polymicrobial wound infections, Ag  相似文献   

7.
Silver nanoparticles (AgNPs) are toxic to various microbes, but the mechanism of action is not fully understood. The present report explores Azadirachta indica leaf extract as a reducing agent for the rapid biosynthesis of AgNPs. The effects of AgNPs on the growth, glutathione‐S‐transferase (GST) activity, and total protein concentration in Staphylococcus aureus were investigated, as was its antibacterial activity against seven other bacterial strains. Nanoparticle synthesis was confirmed by the UV‐Vis spectrum and colour change of the solution. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential analysis, and infrared spectroscopy were used to characterise the synthesised nanoparticles. The UV‐Visible spectrograph showed an absorbance peak at 420 nm. DLS analysis showed an average AgNP size of 159 nm and a Polydispersity Index of 0.373. SEM analysis showed spherical particle shapes, while TEM established an average AgNP size of 7.5 nm. The element analysis profile showed small peaks for calcium, potassium, zinc, chlorine, with the presence of oxygen and silver. AgNPs markedly affected the growth curves and GST activity in treated bacteria, and produced moderate antibacterial activity. Thus AgNPs synthesised from A. indica leaves can interrupt the growth curve and total protein concentration in bacterial cells.Inspec keywords: ultraviolet spectra, microorganisms, nanomedicine, visible spectra, nanoparticles, electrokinetic effects, antibacterial activity, scanning electron microscopy, infrared spectra, transmission electron microscopy, light scattering, nanofabrication, particle size, silver, enzymes, biochemistry, molecular biophysics, cellular biophysicsOther keywords: silver nanoparticles, glutathione‐S‐transferase activity, green leaves, rapid biosynthesis, total protein concentration, nanoparticle synthesis, colour change, zeta potential analysis, UV‐Visible spectrograph, DLS analysis, SEM analysis, element analysis profile, growth curve, GST activity, bacterial strains, antibacterial activity, staphylococcus aureus growth, microbes, Azadirachta azadirachta indica leaf, reducing agent, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, infrared spectroscopy, absorbance peak, polydispersity index, spherical particle shapes, TEM, bacterial cells, Ag  相似文献   

8.
Silver nanoparticles were prepared by chemical reduction method using chitosan as stabilizer and ascorbic acid as reducing agent in this work. The silver/chitosan nanocomposites were characterized in terms of their particle sizes and morphology by using UV spectrophotometer, nano-grainsize analyzer, and transmission electron microscopy. Antibacterial activities of these nanocomposites were carried out for Staphylococcus aureus and Escherichia coli. The silver nanoparticles exhibited significantly inhibition capacity towards these bacteria. Detailed studies on the biocompatibility of the silver/chitosan nanocomposites were investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell adhesion test. The results indicated that these silver/chitosan nanocomposites were benefit for the proliferation and adhesion of L-929 cells, and the biocompatibilities between the nanocomposites and the cells would become better with the culturing days. We anticipated that these silver/chitosan nanocomposites could be a promising candidate as coating material in biomedical engineering and food packing fields wherein antibacterial properties and biocompatibilities are crucial.  相似文献   

9.
In this study, we report a facile synthesis of silver nanoparticle having SERS and antimicrobial activity using bacterial exopolysaccharide (EPS). Bacillus subtilis (MTCC 2422) was grown in nutrient broth and the extracellular EPS secreted by the organism was extracted and purified. The purified EPS was used for the synthesis of silver nanoparticles. The kinetics of silver nanoparticle synthesis was deduced by varying the exposure time and the concentration of EPS. The rate constant (k) for the synthesis of silver nanoparticle was calculated from the slope of ln(A ? At) versus time plot. The k value was found to be 3.49 × 10?3, 5.81 × 10?3 and 5.03 × 10?3 per min for particle synthesis using 2, 5 and 10 mg/mL EPS, respectively. The nanoparticles synthesised had an average particle size of 5.18 ± 1.49 nm, 1.96 ± 0.77 nm and 2.08 ± 0.88 nm for 2, 5 and 10 mg/mL EPS, respectively. The synthesised particles were characterised using UV-Vis absorbance spectroscopy, high-resolution transmission electron microscopy (HRTEM) attached to EDS (energy dispersive spectroscopy), Fourier transform infrared spectroscopy (FTIR), surface enhanced Raman spectroscopy (SERS) and zeta potential analyser. To our knowledge, this is the first study to report SERS activity of microbial Bacillus subtilis EPS-based synthesis of silver nanoparticle. HRTEM images showed silver nanoparticle entrapped in polysaccharide nanocages. Silver nanoparticle showed higher adherence towards the bacterial surface, with good bactericidal activity against Pseudomonas aeroginosa and Staphylococcus aureus.  相似文献   

10.
Monodisperse silver (Ag) nanoparticles were synthesized by using Parthenium hystrophorus L leaf extract in aqueous media. The synthesized nanoparticles were characterized by using UV-vis spectrophotometer, X-ray diffracto-meter (XRD), transmission electron microscope (TEM), and dynamics light scattering (DLS). Size-dependent antibacterial activities of Ag nanoparticles were tested against Gram negative Pseudomonas aeruginosa and Gram positive Staphylococcus aureus. Ag nanoparticles having 20?±?2?nm size in diameter show maximum zone of inhibition (23?±?2.2?mm) in comparison to 40?nm and 70?nm diameter nanoparticles for Pseudomonas aeruginosa. The zone of inhibition against Staphylococcus aureus were 19?±?1.8?mm, 15?±?1.5?mm and 11?±?1?mm for 20?nm, 40?nm, and 70?nm, respectively. In addition, affect of concentration of 20?nm size Ag nanoparticles on Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus species were also reported and results were compared with 10?µg/ml dose of Gentamicin sulphate. The Parthenium hystrophorus L leaf extract capped 20?±?2?nm Ag nanoparticles (7.5?µg/ml) shows statistically significant antibacterial activity than Gentamicin sulphate (10?µg/ml) against Staphylococcus aureus.  相似文献   

11.
An efficient protocol for synthesis of silver nanoparticles (AgNPs) using the combination of aqueous extract of Tinospora cordifolia leaves and 5 mM silver nitrate (AgNO3) solution was developed. This study revealed that bioactive compounds present in the extract function as stabilizing and capping agent for AgNPs. Scanning electron microscope and transmission electron microscope studies confirm the structure and surface morphology of the AgNPs. The size of synthesized AgNPs was in the range of 30–50 nm having spherical morphology. The crystalline nature of NPs was defined by the X-ray diffraction pattern. The AgNPs were found to be toxic against pathogenic bacteria such as Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), and Staphylococcus aureus (ATCC 29213) and against plant pathogenic fungi Fusarium oxysporum (MTCC 8608) and Sclerotinia sclerotiorum (MTCC 8785). The use of AgNPs as antibacterial and antifungal agent is advantageous over other methods for control of pathogenic microorganisms, and it can be of great importance in developing novel drugs for curing many lethal diseases.  相似文献   

12.
Synthesis of nanoparticles by using natural products as reducing and stabilizing agents have been widely used in various fields especially medicine, primarily because of its lower cost, simplicity, and less toxic byproducts. In the present work, silver nanoparticles (Ag NPs) were rapidly synthesized from silver nitrate in a green one-step synthesis by the aqueous extracts of Osage orange (Maclura pomifera) leaf as a reducing and stabilizing agent simultaneously. The effects of pH, extract quantity, and silver salt concentration were investigated to determine the optimum conditions of green synthesis of Ag NPs. The synthesized Ag NPs were characterized by different techniques including UV–Visible (UV–Vis) absorption spectroscopy, X-ray diffraction (XRD), Fourier transform Infrared (FT-IR) Spectroscopy, and Transmission Electron Microscopy (TEM). The Ag NPs showed surface plasmon resonance centered at 415?nm. The XRD pattern and TEM analysis revealed spherical, stable, and uniform Ag NPs with the average particle size of about 12?nm. The FT-IR spectroscopy showed that mainly hydroxyl functional groups, as both the reducing and stabilizing agent are responsible for silver nanoparticles synthesis. The antimicrobial activity of the synthesized Ag NPs showed a significant microbicidal effect on all clinical isolates especially, Gram-negative bacteria and fungi. These results suggest that such stable and uniform Ag NPs can be synthesized rapidly and simply for clinical as well as pharmaceutical applications.  相似文献   

13.
Biogenic synthesis of nanoparticles offers an attractive alternate to chemical synthesis methods. Various hazard free, eco-friendly methods of synthesis of silver nanoparticles are in operation. In chemical reduction methods, the reducing agent is a chemical solution, whereas in biological ones, the collection of enzymes, especially nitrate reductase, plays this role. The highest antibacterial activity of silver nanoparticles synthesised by chemical and biological methods was found in Staphylococcus aureus and Escherichia coli. The paper aims to discuss some fundamental issues about non-biological methods and benefits about biological methods for silver nanoparticles synthesis and their antibacterial studies.  相似文献   

14.
We treated wool textiles with a sulfur nano-silver colloidal solution (SNSE) having Ag/S complex, which was a particle size of average 4.2 nm in ethanol base. The SNSE was a safe chemical agent having the perfect antibacterial efficacy with a very small amount of nano-sized silver and non-irritative solution to the skin. Antibacterial activity was evaluated by calculation of bacteria reduction against Gram-positive (Staphylococcus aureus) and Gram-negative (Klebsiella pneumoniae) bacteria. The treated wool textiles with the silver colloid were investigated the resistivity against insect pests through both calculation of the fiber loss weight and visible assessment attacked by larvae after 14 days in given conditions. Also, we confirmed the antistatic efficacy of the finished fabrics with silver particle on their surface. The static electricity of the treated wool fabric was increased more up to 50 ppm, then, it was decreased according to the silver content. Consequently, it was demonstrated that the finished wool fabrics with sulfur nano-silver colloid had various functionalities, such as mothproofing, antibiotic, and antistatic property.  相似文献   

15.
Zinc‐doped copper oxide nanoparticles are synthesized and simultaneously deposited on cotton fabric using ultrasound irradiation. The optimization of the processing conditions, the specific reagent ratio, and the precursor concentration results in the formation of uniform nanoparticles with an average size of ≈30 nm. The antibacterial activity of the Zn‐doped CuO Cu0.88Zn0.12O in a colloidal suspension or deposited on the fabric is tested against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) bacteria. A substantial enhancement of 10 000 times in the antimicrobial activity of the Zn–CuO nanocomposite compared to the pure CuO and ZnO nanoparticles (NPs) is observed after 10 min exposure to the bacteria. Similar activities are observed against multidrug‐resistant bacteria (MDR), (i.e., Methicillin‐resistant S. aureus and MDR E. coli) further emphasizing the efficacy of this composite. Finally, the mechanism for this enhanced antibacterial activity is presented.  相似文献   

16.
In this study, extracellular extract of plant growth promoting bacterium, Nitrobacter sp. is used for the bioconversion of AgNO3 (silver nitrate) into Ag2 O (silver oxide nanoparticles). It is an easy, ecofriendly and single step method for Ag2 O NPs synthesis. The bio‐synthesized nanoparticles were characterized using different techniques. UV‐Vis results showed the maximum absorbance around 450 nm. XRD result shows the particles to have faced centered cubic (fcc) crystalline nature. FTIR analysis reveals the functional groups that are involved in bioconversion such as C–N, N–H and C=O. Energy‐dispersive X‐ray spectroscopy (EDAX) spectrum confirms that the prepared nanoparticle is Ag2 O NPs. Particle size distribution result reveals that the average particle size is around 40 nm. The synthesized Ag2 O NPs found to be almost spherical in shape. Biosynthesized Ag2 O NPs possess good antibacterial activity against selected Gram positive and Gram negative bacterial strains namely Salmonella typhimurium, Staphylococcus aureus, Escherichia coli and Klebsiella pneumoniae when compared to standard antibiotic. In addition, Ag2 O NPs exhibits excellent free radical scavenging activity with respect to dosage. Thus, this study is a new approach to use soil bacterial extract for the production of Ag2 O NPs for biomedical application.Inspec keywords: nanomedicine, nanoparticles, silver compounds, antibacterial activity, ultraviolet spectra, visible spectra, X‐ray diffraction, Fourier transform infrared spectra, X‐ray chemical analysis, particle size, free radicalsOther keywords: free radical scavenging activity, Ag2 O, AgNO3 , Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Salmonella typhimurium, Gram negative bacterial strains, Gram positive bacterial strains, particle size distribution, energy‐dispersive X‐ray spectroscopy spectrum, functional groups, Fourier transform infrared analysis, faced centred cubic crystalline nature, XRD, UV‐Vis results, bio‐synthesised nanoparticles, silver oxide nanoparticles, silver nitrate bioconversion, plant growth promoting bacterium, extracellular extract, biomedical application, antibacterial potential, antioxidant potential, Ag2 O NPs, extract mediated biosynthesis, Nitrobacter sp  相似文献   

17.
The bioreduction method employed for the synthesis of colloidal AgNPs and AuNPs is reported here. Methanolic and aqueous extracts of Dolichos biflorus Linn seed was used as the bio-reducing agent. The structural and morphological aspects of the synthesised metal nanoparticles were investigated using X-ray diffraction (XRD), energy-dispersive spectroscopy (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). XRD, revealed crystalline nature of the synthesised particles, UV–vis spectrophotometric analysis showed characteristic absorption peak for both AgNPs and AuNPs. EDX analysis confirmed the presence of elemental silver and gold particles and the average size and morphology were determined by SEM and TEM. The synthesised AgNPs exhibited good antibacterial potential whereas AuNPs showed poor activity against human pathogenic, gram-positive bacteria such as Staphylococcus aureus, Bacillus subtilis and gram-negative bacteria, such as Escherichia coli, Pseudomonas aeruginosa.  相似文献   

18.
Bacterial cellulose-based antifouling materials have been produced by incorporation of silver nanoparticles for broad-spectrum antimicrobial activity. Three variations of silver nitrate (AgNO3) to reducing agent concentrations have been tried to vary the silver nanoparticle dimension. The formation of silver nanoparticles was also evidenced by the X-ray diffraction, and the crystallite size was found to decrease with increase in NaBH4 concentration. AgBC composites having < 2% (W/W) of silver exhibited 99.9% antimicrobial activity which was sustained up to 72 h against spoiled food derived mixed microbial culture. On the other hand, only 90% activity was observed with colloidal AgNPs due to aggregate formation. Composites displayed superior antimicrobial activity than colloid with equivalent amount of silver. Food stuff was protected from microbial spoilage for 30 days when stored in AgBC nanocomposites, whereas spoilage was noticed within 15 days for food stuff stored in regular polythene bag. Therefore, the AgBC composite having < 2% silver can be used as a lining of regular food packaging material to extend shelf life till 30 days. Toxicity due to high amount of silver can be prevented with these composites and can be safely used in healthcare applications such as food packaging, wound dressing, hospital bed lining and surgical apparels.  相似文献   

19.
Silver nanoparticles (SNPs) were synthesised by using the Arial part extract of Dorema ammoniacum D. and characterised by employing UV–visible spectroscopy, Fourier transform infrared spectroscopy and X‐ray diffraction techniques. Transmission electron microscopy and field emission scanning electron microscopy were applied to investigate the morphological structure of the bio‐synthesised SNPs. The antimicrobial activity of SNPs was studied against Gram positive (Bacillus cereus and Staphylococcus aureus) and Gram‐negative (Escherichia coli and Salmonella typhimurium) bacteria by employing the disk diffusion agar process. An extremely antimicrobial effect was observed for SNPs. Utilising D. ammoniacum D. as a mediator for the synthesis of SNPs helped to save time and cost.Inspec keywords: silver, nanoparticles, nanofabrication, nanomedicine, biomedical materials, particle size, antibacterial activity, visible spectra, ultraviolet spectra, microorganisms, field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, surface diffusionOther keywords: green synthesis, silver nanoparticles, Dorema ammoniacum D. extract, antimicrobial analysis, Arial part extract, UV‐visible spectroscopy, Fourier transform infrared spectroscopy, X‐ray diffraction, transmission electron microscopy, field emission scanning electron microscopy, morphological structure, bio‐synthesised SNPs, antimicrobial activity, gram positive Bacillus cereus bacteria, gram positive Staphylococcus aureus bacteria, gram‐negative Escherichia coli bacteria, gram‐negative Salmonella typhimurium bacteria, disk diffusion agar process, antimicrobial effect, Ag  相似文献   

20.
Easier, less time consuming, green processes, which yield silver nanoparticles of uniform size, shape and morphology are of interest. Various methods for synthesis, such as conventional temperature assisted process, controlled reaction at elevated temperatures, and microwave assisted process have been evaluated for the kind of silver nanoparticles synthesized. Starch has been employed as a template and reducing agent. Electron microscopy, photon correlation spectroscopy and surface plasmon resonance have been employed to characterize the silver nanoparticles synthesized. Compared to conventional methods, microwave assisted synthesis was faster and provided particles with an average particle size of 12 nm. Further, the starch functions as template, preventing the aggregation of silver nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号