首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The bulk mechanical properties of two different types of rootzone sands (round and angular) were measured using a cubical triaxial tester. Two monosize sands (d 50 = 0.375 mm and 0.675 mm) and their 50:50 binary mixtures (d 50 = 0.500 mm) were studied. The compression, shear, and failure responses of the above-mentioned six compositions were analyzed, compared, and modeled. Two elastic parameters (bulk and shear moduli) and two elastoplastic parameters (swelling and consolidation indices) of the six sand compositions were also calculated and compared. The angular sand was more compressible than round sand during isotropic compression. In addition, the angular sands tended to have lower initial bulk density and high porosity values. Among the three different size fractions, the 0.375 mm mixture was least compressible for both sand shapes. The failure strength and shear modulus of the angular sand were higher than the round sands. In addition, due to their simplicity, phenomenological models were developed to predict the compression and shear behavior of the sands. The prediction models were validated using subangular and subround sands. Average relative difference values were calculated to determine the effectiveness of the prediction models. The mean average relative difference values for compression profiles, i.e., volumetric stress vs. volumetric strain, were from 16 % to 39 %, except for the initial load-response portion (< 1 % volumetric strain). The predictive models were effective in reproducing the failure responses: at 17.2 kPa confining pressure, the mean of average relative difference was 23 %; at 34.5 kPa , the mean difference was 24 %.  相似文献   

2.
The interactions between organics and sand particles at different moisture contents are important in understanding the general mechanical behavior of rootzone sand mixtures. Towards this end, eight rootzone sand mixtures (4 shapes 2 2 moisture contents) used in golf green construction were tested using the cubical triaxial tester (CTT). These eight mixtures consist of sphagnum peat as the organic source and four sands of varying particle shape (round, subround, subangular, and angular). The sand-peat mixtures were tested at two moisture contents (air-dried and 30 cm tension). Of all the test samples, air-dried round sand with peat had the highest initial bulk density (IBD) value (1.49 g/cc), while moist angular sand with peat had the lowest IBD value (1.23 g/cc). These values influenced the compression behavior of samples, for example, the air-dried round sand with peat was least compressible while moist angular sand with peat was most compressible. Generally, moisture enhanced the compressibility of test specimens. At an isotropic pressure of 100 kPa, the volumetric strain value of moist round sand with peat was 47% higher than the volumetric strain value of the air-dried round sand with peat. Consequently, moisture and peat in bulk sand samples act as lubricants and assist in the compression process. In addition, bulk modulus values decreased with moisture. Due to the dominant effect of peat, there were no large differences between bulk modulus values of different particle shapes. The shear and failure responses of the above-mentioned eight compositions were also analyzed, compared, and modeled. Of all sand mixtures tested, air-dried angular sands with peat had the highest brittle-type failure stress value, 181 kPa at 34.5 kPa confining pressure, and moist subangular sand with peat had the lowest ductile-type failure stress value, 141 kPa at the same confining pressure. Shear modulus values increased with the increase of mean pressure, but in the case of sands containing both moisture and peat, shear modulus values increased gradually. Overall, peat and moisture content have a dominant effect on the compression and failure behavior of the rootzone sands. rootzone sand mixtures moisture effect particle shape effect organics effect mechanical behavior compression response shear/failure response prediction models  相似文献   

3.
The interactions between organics and sand particles at different moisture contents are important in understanding the general mechanical behavior of rootzone sand mixtures. Towards this end, eight rootzone sand mixtures (4 shapes ×2 moisture contents) used in golf green construction were tested using the cubical triaxial tester (CTT). These eight mixtures consist of sphagnum peat as the organic source and four sands of varying particle shape (round, subround, subangular, and angular). The sand-peat mixtures were tested at two moisture contents (air-dried and 30 cm tension). Of all the test samples, air-dried round sand with peat had the highest initial bulk density (IBD) value (1.49 g/cc), while moist angular sand with peat had the lowest IBD value (1.23 g/cc). These values influenced the compression behavior of samples, for example, the air-dried round sand with peat was least compressible while moist angular sand with peat was most compressible. Generally, moisture enhanced the compressibility of test specimens. At an isotropic pressure of 100 kPa, the volumetric strain value of moist round sand with peat was 47% higher than the volumetric strain value of the air-dried round sand with peat. Consequently, moisture and peat in bulk sand samples act as lubricants and assist in the compression process. In addition, bulk modulus values decreased with moisture. Due to the dominant effect of peat, there were no large differences between bulk modulus values of different particle shapes. The shear and failure responses of the above-mentioned eight compositions were also analyzed, compared, and modeled. Of all sand mixtures tested, air-dried angular sands with peat had the highest brittle-type failure stress value, 181 kPa at 34.5 kPa confining pressure, and moist subangular sand with peat had the lowest ductile-type failure stress value, 141 kPa at the same confining pressure. Shear modulus values increased with the increase of mean pressure, but in the case of sands containing both moisture and peat, shear modulus values increased gradually. Overall, peat and moisture content have a dominant effect on the compression and failure behavior of the rootzone sands.

rootzone sand mixtures moisture effect particle shape effect organics effect mechanical behavior compression response shear/failure response prediction models  相似文献   

4.
残余热应力对Al2O3/Ni金属陶瓷断裂行为和力学性能的影响   总被引:1,自引:0,他引:1  
运用残余热应力理论定性地解释也残余热应力对Al2O3/Ni金属陶瓷断裂行为和力学性能的影响,Ni颗粒位于Al2O3晶内或Ni含量低时,在Al2O3-Al2O3晶界产生张应力,易发生沿晶断裂;而其位于Al2O3晶界或Ni含量高时,在Al2O3-Al2O3晶界产生压应力,易产生穿晶断裂。  相似文献   

5.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号