首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat exchangers are used widely in residential, commercial, and industrial HVAC applications. Air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the characteristics of the air-side particulate fouling materials in finned-tube heat exchangers of air conditioners. Air conditioners being used in the field such as inns, restaurants, and offices are collected in chronological order of use. The fouling materials attached on the evaporator heat exchangers consist of particulates and fibers. The particulates mainly originate from indoor dusts and the fibers are separated from clothes, bedclothes, papers, fur of pets, and so on. Typical fouling materials on the heat exchangers include fibers and dusts ranging from 6.6 to 20.9 μm in aerodynamic mean diameter.  相似文献   

2.
Carbonaceous materials and carbon matrix composites (CAMCs) have potential to be used in heat exchangers and heat sinks for a number of thermal management applications related to HVAC&R systems, especially in high-temperature and corrosive environments. Recent developments in carbonaceous materials, such as new, natural graphite, carbon foam, carbon nanotubes, and CAMCs, open opportunities for new heat exchanger designs for compact and lightweight applications. The property data of various monolithic carbonaceous materials and CAMCs and their applications in liquid-to-liquid heat exchangers, liquid-to-gas heat exchangers, gas-to-gas heat exchangers and heat sinks are reviewed in this paper. While it is clear that these materials do hold promise for use in the construction of heat exchangers in different applications, additional research is still required in material properties, life-time behavior, structural design and manufacturing cost reduction.  相似文献   

3.
Microbial fouling on heat exchange surface is common for large amount of microorganisms in circulating cooling water. In this article, a modified surface technology is used to suppress and reduce the accumulation of microbial fouling on the heat transfer surface. Firstly a Ni-Cu-P modified surface is prepared by electroless plating, and a Ni-P surface applied commonly in industry is also prepared as a comparison. With the help of the designed and constructed experimental system for dynamic monitoring of microbial fouling, the microbial fouling tests of the Ni-Cu-P, Ni- P and carbon steel surface are carried out. The results show that the Ni-Cu-P modified surface has excellent antifouling performance. Compared with carbon steel, the microbial fouling on the Ni-P and Ni-Cu-P modified surface are decreased by 90.6 % and 92.0 % respectively. Further the effects of temperature, flow rate, and initial bacterial concentration on microbial fouling heat resistance of Ni-Cu-P modified surface are investigated and analyzed. With the cooling water inlet temperature increasing (25–40 °C), the fouling heat resistance of the Ni-Cu-P modified surface is increased first and then reduced. With the flow rate increasing (0.2 m/s-0.3 m/s), the fouling heat resistance of Ni-Cu-P modified surface is decreased by 78.3 %. With the initial bacteria concentration in cooling water increasing (8.364 × 109 CFU/mL −51.456 × 109 CFU/mL), the fouling heat resistance is increased by 57.4 % accordingly. By rationally adjusting the operating conditions, such as regulating the temperature of cooling water far away from the suitable temperature of bacteria and increasing the flow rate of circulating cooling water as much as possible, the accumulation of microbial fouling on the Ni-Cu-P modified surface can be further reduced, allowing for long-term cleaning and effective heat transfer of the Ni-Cu-P modified heat exchange surface.  相似文献   

4.
A multi-split VRF system operates unsteadily most of time due to the constantly varying refrigerant flow rates of associated indoor units. VRF systems require a different approach from conventional techniques to detect faults, which have developed based on steady-state operations. In this paper, two fault detection techniques are proposed. Their advantage is that they do not require the test data to be preprocessed to obtain steady-state data. The first technique is applied to detect heat exchanger fouling by a state observer, and the other technique is used to detect valve sticking by temperature variance. These techniques were not chosen haphazardly but were derived from physical reasoning. Their validity was confirmed by test data. The methodology developed in this study can be applied similarly to other HVAC equipment that operates mostly in transient states.  相似文献   

5.
Commercial poly(dimethylsiloxane) (PDMS) 7-microm solid-phase microextraction (SPME) fibers were used for sampling and Raman spectroscopic analysis of a tailpipe diesel exhaust, candle smoke, cigarette smoke, and asbestos dust. Samples were collected via direct exposure of the SPME fiber to contaminated air. The mass loading for SPME fibers was varied by changing the sampling time. Results indicate that PDMS-coated fibers provide a simple, fast, reusable, and cost-effective air sampling tool for airborne particulates. The PDMS coating was stable; Raman bands of the PDMS coating were observed exactly at the same wavenumber positions before and after air sampling. Raman spectroscopic analysis resulted in identification of several characteristic bands allowing chemical speciation of particulates. The advantage of the SPME fiber is the open bed geometry allowing for application of various spectroscopic methods of particulate analysis. This paper describes the first-ever combined application of SPME technology with Raman confocal microspectroscopy for sampling and analysis of airborne particulates. Advantages of the combination of solid-phase microextraction and Raman microspectroscopy for airborne particulate analysis are discussed. Challenges associated with combined SPME sampling and Raman analysis of single particles are also described.  相似文献   

6.
By analyzing heat and exergy transfer processes of heat exchangers operating below the surrounding temperature, the effect of fouling on the low temperature heat exchangers performance has been conducted. Taking the parallel flow, counter flow, and cross flow low temperature heat exchangers as examples, the effects of some non-dimensional parameters on the low temperature heat exchangers performance under the fouling condition are given by introducing exergy transfer units number.  相似文献   

7.
控制与改善室内空气环境的生态技术措施   总被引:3,自引:0,他引:3  
指出应以生态技术措施来控制与改善室内空气环境,并分别从建材选用、建筑设计与布局、通风空调系统及植物绿化几个方面,分析了其对室内空气环境的影响及其相应的改善措施。  相似文献   

8.
ABSTRACT

The versatility of polymer matrix composites in industrial applications has gained reputation and adaptability among advanced materials. Still, treatment of reinforcement for these composites has emerged as a vital domain to be explored. With a continuance to this fact, the present paper aims to analyze the effect of reinforced electroless coated silicon carbide particulates on mechanical properties of composites. The composite is developed using epoxy polymer as matrix and glass fibers as primary reinforcement. The electroless coated and uncoated silicon carbide particulates were used as secondary reinforcement. The phase identification of copper on secondary reinforcement was identified using X-ray powder diffraction technique. Fracture analysis during tensile testing and bonding behavior between matrix and reinforcement is examined using field emission scanning electron microscopy with energy dispersive spectroscopy. The presence of copper particles on secondary reinforcement results in improved interfacial bonding and resistance against fracture during loading.  相似文献   

9.
室内空气污染和空气质量控制   总被引:3,自引:0,他引:3  
当前室内空气品质问题严重,有关这方面的纠纷也随之出现。针对室内空气污染特性,本文综合地讨论了室内空气品质的影响因素、评价指标,分析了新风量、气流组织、污染源、装修材料等因素对室内空气品质的影响,并从暖通、环保等角度提出r相应的技术改善措施。  相似文献   

10.
11.
《Advanced Powder Technology》2020,31(9):4082-4088
Separation of fine particulate solid materials is one of most important unit operations in industry. Utilization of gas-solid fluidized beds has been considered where particulates are released from constraints due to contacts with surrounding particulates and segregation occurs according to density, size or combination of density and size. Addition of mechanical vibration to the gas-solid fluidized bed may improve dry solid separation. In this study, we investigated the dry separation characteristics of solid particulates using a vibro-fluidized bed especially focusing on the separation of fine particulate ores (≈100 μm) with small density differences. At first, we focused on the influence of fluidizing air velocity on the efficiency of segregation. Subsequently, the influence of vibration strength, vibration amplitude and frequency on segregation behavior was investigated. We found the density segregation does not occur with either gas-fluidization or vertical vibration alone. Only the combination of these effects produces density segregation. The fluidizing air velocity is an important factor to enhance the density-segregation of the particulates with small density difference.  相似文献   

12.
膜-生物反应器的研究及其在废水处理中的应用   总被引:8,自引:1,他引:7  
综述了废水处理领域中的膜-生物反应器的基本特点、应用现状、存在的问题以及国内外研究的进展;重点阐述了膜-生物反应器运行工艺、新型膜材料与器件以及影响膜污染形成的因素与防治措施;并对今后的研究方向进行了展望.  相似文献   

13.
Compact and lightweight heat exchangers are needed for motor vehicle air-conditioning systems and for several types of unitary equipment. The high-pressure natural refrigerant CO2 is now being evaluated for use in such applications, and efficient heat exchangers are being developed and investigated. Carbon dioxide heat exchangers are designed for high refrigerant mass flux and use small-diameter tubes or extruded flat microchannel tubes. Refrigerant-side heat transfer coefficients are higher than with fluorocarbons, and reduced internal surface areas can therefore be tolerated. Both small-diameter mechanically expanded round-tube heat exchangers and brazed microchannel-type units have been built and tested successfully. Results show that compact heat exchangers optimized for CO2 are very competitive with baseline HFC/HCFC units in terms of physical dimensions, exchanger mass and thermal performance. Smaller tube and manifold dimensions can give reduced size compared with HFC-134a equipment. The temperature approach between air inlet and refrigerant outlet is much lower in CO2 gas coolers than in baseline system condensers of equal size and capacity, and the reduced refrigerant exit temperature has a marked influence on the coefficient of performance, Microchannel heat exchangers give the best overall efficiency. Refrigerant distribution in multiport manifolds and heat transfer tubes does not seem to be a problem.  相似文献   

14.
空调器室内机多数采用翅片管换热器,会因制冷运行过程中表面析湿而粘附灰尘,导致空气流动阻力增大。本文选用空调器中常用的平直翅片、波纹翅片和开窗翅片作为测试样件,翅片间距范围为1.5~2.2 mm,研究了翅片管换热器在析湿工况下的积灰特性及积灰对空气侧压降的影响。结果表明:翅片表面的析湿量决定积灰程度,析湿液滴分布越密集、液桥数量越多,翅片迎风面的堵塞程度越严重且空气侧压降越大。在相同析湿工况下,具有复杂结构的开窗翅片和小翅片间距更容易积灰并增大空气侧压降,因此降低翅片结构复杂程度并适当增大翅片间距有利于空调器的防尘。在积灰过程中,随着换热器表面粉尘沉积量增加,空气侧压降先增大后保持稳定。  相似文献   

15.
张蕾 《制冷技术》2010,(1):33-36
本文通过对两套采用微通道换热器的KFR-72LW空调器样机(1号机:室内外换热器均采用微通道换热器;2号机:室外机为微通道换热器,室内机为管翅式换热器),分别进行性能测试,对比分析采用微通道换热器与管翅式换热器的空调器性能差异。试验结果分析显示:微通道换热器空调器具有高效(强制冷性能)、减排(减少制冷剂充注量)、低成本(换热器小型化)等优点;但制热工况下,因室外机采用微通道换热器,换热面积大幅度减小,蒸发压力过低,导致制热效果不良、系统频繁除霜等问题,有待于进一步研究解决。  相似文献   

16.
新风除湿系统通过置换室内空气和控制室内湿度营造健康舒适的建筑环境。但家用整体式新风除湿热泵受限于安装空间,存在除湿能效低、能力不足等问题。本文提出一种基于四换热器构型的热泵热回收型新风除湿系统,既能全面回收内外部冷能,提升除湿能力和能效;又能通过空气流路和制冷剂流路的转换产生多种运行模式,满足各种应用场景下的新风除湿需求。系统仿真和样机的实测结果表明,在名义制冷工况下的除湿能效SMER高达3.27 kg/(kW·h),相比三换热器系统提升35.2%,相比二换热器系统提升59.6%。  相似文献   

17.
现行的铁路客车空调系统设计及其维护中存在一些影响IAQ的因素.本文从室内设计参数、新风采集、通风系统、通风方式及气流组织、增氧等几个方面研究了青藏铁路空调客车IAQ,并提出了在空调系统设计维护时应注意的问题.  相似文献   

18.
This study investigates thermal dynamic modeling of a passenger compartment in an air conditioned automobile equipped with HVAC (heating, ventilation, and air conditioning). In particular, dynamics of temperature and humidity ratio, both critical to passenger comfort, in the passenger compartment are examined. By analyzing enthalpy change during an automobile air conditioning circulation cycle on a psychrometric chart, heat exchange between outside environment and the passenger compartment can be modeled as functions of operation settings of the HVAC. With enthalpy content decomposed into sensible heat and latent heat, changes in heat content can be attributed to the changes in the corresponding temperature and humidity ratio, respectively. Consequently, impacts resulting from the mismatch between two heat characteristics on temperature and humidity ratio can be formulated accordingly: room sensible heat factor (RSHF) of the passenger compartment and apparatus sensible heat factor (ASHF) of the HVAC. A Matlab/Simulink simulation is implemented to verify the proposed model under several control policies that either maintain constant enthalpy or maintain constant temperature in the passenger compartment. With these two temperature and humidity ratio models derived, further research on designing control policies to achieve better passenger comfort for general automobile air conditioning systems can be derived and tested.  相似文献   

19.
空调用翅片管式换热器长期使用会受到一定程度的腐蚀,影响换热器的换热性能,导致整个空调系统的能效降低.本文介绍了翅片管式换热器3种主要的腐蚀机理:蚁巢腐蚀、点蚀和间隙腐蚀,从形貌、压降及传热特性3个方面分析了腐蚀对翅片管式换热器性能的影响,结果表明:翅片管式换热器腐蚀后,传热系数和换热量均减小,空气侧压降受影响较小,在5...  相似文献   

20.
Performance analysis of liquid desiccant dehumidification systems   总被引:5,自引:0,他引:5  
Desiccant systems find applications in a very large variety of industrial and daily usage products including the new HVAC installations. An overview of liquid desiccant technology has been presented in this paper along with a compilation of experimental performance data of liquid desiccant dehumidifiers, empirical dehumidification effectiveness and mass transfer correlations in a useful and easy to read tabular format. The latest trends in this area suggest that hybrid systems are of current interest to HVAC industry, not only for high latent load applications but also for improving indoor air quality. The paper presents a comprehensive comparative parametric analysis of packed bed dehumidifiers for three commonly used desiccant materials viz. triethylene glycol, lithium chloride and calcium chloride, using empirical correlations for dehumidification effectiveness from the literature. The analysis reveals significant variations and anomalies in trends between the predictions by various correlations for the same operating conditions, and highlights the need for benchmarking the performance of desiccant dehumidifiers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号