首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
主要对基于小波包变换的谐波检测方法进行了探讨,通过MATLAB进行了编程仿真,从而确定这种检测方法的可行性和优越性。  相似文献   

2.
基于支持向量机的旋转机械故障诊断   总被引:2,自引:2,他引:2  
为了解决旋转机械故障的在线诊断识别问题,用小波包从旋转机械的震动信号中提取特征向量,给出了一种基于支持向量机的故障诊断分类方法。该方法通过有限的学习样本,建立旋转机械故障特征与其运行状态之间的关系。利用获得的矿井提升机减速箱齿轮数据建立了多级故障分类器,通过对样本的分类输出检验,验证了该故障诊断方法的可行性。  相似文献   

3.
针对传统滚动轴承故障诊断方法受人为因素影响较为严重,故障成因相对复杂等问题,在现有的研究基础上提出一种基于小波包分析和有向无环图相关向量机相结合的故障诊断方法。将滚动轴承在不同的故障条件下的振动信号进行谐波小波包分解与重构,提取频带能量作为特征向量,应用有向无环图相关向量机建立从特征向量到故障模式之间的映射,最终做到对滚动轴承的故障诊断。结果表明,该方法能够快速准确地诊断出滚动轴承故障,验证了该方法的有效性和稳定性。此外,通过与支持向量机(SVM)的对比分析,显示了RVM在智能故障诊断应用中的优越性。  相似文献   

4.
针对现有煤矿旋转机械滚动轴承故障诊断方法存在信号有效特征提取不完全、故障诊断精度不高及效率低等问题,提出了一种基于小波包分解和粒子群优化BP神经网络的滚动轴承故障诊断方法。该方法包括信号特征提取和故障类型识别两部分:在信号特征提取部分,对采集的滚动轴承振动信号进行小波包分解,得到各子频带能量及信号总能量,经归一化处理后获得表征滚动轴承状态的特征向量;在故障类型识别部分,通过粒子群优化算法优化BP神经网络的初始权值和阈值,以加速网络收敛速度,避免陷入局部极小值。实验结果表明,该方法提高了滚动轴承故障诊断效率和准确率。  相似文献   

5.
传统方法在诊断滚动轴承故障时受人为因素影响,故障成因复杂,因此在已有理论上提出一种基于谐波小波包和自适应支持向量机相结合的捣固车故障诊断方法。谐波小波包对不同故障下的振动信号展开分解及重构后所提取的频带能量即为特征向量,再把特征值输入支持向量机(SVM)模型中训练并对核函数和惩罚系数进行优化。用自适应支持向量机构建从特征向量到故障类型间的对应,从而完成滚动轴承故障的诊断。该方法能高效准确地诊断出故障类型且有实用价值。通过与GA-SVM及AGA-SVM对比,证明此方法在故障诊断领域中的卓越性。  相似文献   

6.
小波分析在旋转机械故障诊断中的应用   总被引:3,自引:0,他引:3  
通过对相关理论的分析证实了旋转机械的故障振动信号基本上是一个复合信号。该复合信号包含多个信号分量,每个信号分量都具有一个单一的频率,每个单一频率都是由旋转机械的旋转频率决定的。如果知道旋转机械的旋转频率,就可以知道这些单一频率。通过对小波理论的分析,证明了在一定的情况下小波分解的频率范围由离散信号的采样频率决定。结合以上理论,提出了一种新的信号检测和分析方法。  相似文献   

7.
基于小波包神经网络的传感器故障诊断方法   总被引:3,自引:0,他引:3  
徐涛  王祁 《传感技术学报》2006,19(4):1060-1064
讨论了小波包神经网络在传感器故障诊断中的应用问题.文中提出了将小波包分解提取各个节点特征能量与RBF神经网络进行模式分类的传感器故障诊断方法.通过三层小波包分解得到各个节点的分解系数,通过一定的削减算法使得故障的瞬态信号的特征得到加强,再根据重构的时域信号计算各个节点对应的能量,作为特征向量训练RBF神经网络.通过各种故障模式特征数据的训练,RBF网络具有了传感器故障诊断的功能.最后,通过工业锅炉流量传感器数据对训练之后的RBF神经网络进行检验,验证了这种方法的实用性和有效性.  相似文献   

8.
通过三层小波包分解将陀螺仪的输出信号进行分解,对分解得到的八个不同频段上的节点进行特征提取,提取后的8维特征向量作为神经网络的输入.对RBF神经网络进行训练,训练后的神经网络进行故障诊断.对神经网络进行测试,经测试当系统输入向量存在故障时,系统可以准确的诊断出故障类型.  相似文献   

9.
提出了一种基于小波包变换的电力谐波检测方法。该方法采用小波包变换对电流信号进行分解,即将该电流信号分解成低频部分与高频部分,然后分别对低频部分及高频部分进行小波包分解,重构后得到该电流信号的基波分量,从原始电流信号中减去基波分量,从而得到该电流信号的谐波分量。仿真结果表明,该方法能够很好地检测出电流信号中的谐波分量,并且能对指定频率的谐波进行检测。  相似文献   

10.
基于小波包变换的肌电信号特征提取   总被引:1,自引:0,他引:1  
本文提出一种新的基于小波包变换的特征提取方法,提取表面肌电信号进行小波包变换后得到的信号的协方差矩阵的特征值的最大值作为特征值。利用该方法对表面肌电信号提取特征值构建特征矢量,送入Elman神经网络对手部6种动作模式进行识别,在Matlab平台上进行实验仿真。实验结果表明,该方法取得了很好的识别效果。  相似文献   

11.
提出了基于小波多分辨分析和小波包预处理的模拟电路故障诊断方法。该方法用小波作为信号预处理工具,经小波多分辨分析得到N层分解后的低频和高频信号,再利用小波包分析对多分辨分析没有细分的高频信号进一步分解,以达到提高频率分解率的目的。经PCA分析和归一化后的能量作为训练样本送入BP神经网络进行训练。仿真实验表明此方法能够快速有效的对模拟电路的故障进行诊断和定位。  相似文献   

12.
提取时域与频域共20个特征参数作为数据样本,选择适合旋转机械振动信号的径向基函数及相关参数,基于一对多法构造支持向量机(SVM)多类分类器,实现旋转机械滚动轴承的故障诊断。通过对振动信号特征进行训练与测试,并与BP神经网络进行对比结果表明,该SVM多类分类器可较好地解决小样本问题,在训练时间和识别正确率上均优于BP神经网络。  相似文献   

13.
基于RBF神经网络和小波包的电动机故障诊断研究   总被引:2,自引:0,他引:2  
针对传统的电动机故障诊断存在很难准确提取故障时的特征信号及对故障作出准确预测的问题,提出了一种基于RBF神经网络和小波包的电动机故障诊断的方法。该方法采用小波包分析技术提取电动机典型轴承故障、转子故障和绝缘故障振动信号的特征频段能量并组成向量作为RBF神经网络的输入,用于诊断电动机的故障。实验和仿真结果表明,使用RBF神经网络对电动机故障诊断是非常有效的,对电动机早期故障的发现及维修有积极意义。  相似文献   

14.
基于数值优化的改进BP算法在旋转机械故障诊断中的应用   总被引:4,自引:0,他引:4  
机械设备的安全运行对企业的现代化生产至关重要,因而对故障机械的诊断近年来受到了普遍关注,而神经网络具有分辨原因及故障类型的能力,在故障诊断领域中得到了广泛应用.本文针对传统BP算法存在的收敛速度慢以及容易陷入局部最小点等问题,给出了两种基于数值优化方法的改进BP算法,应用改进的BP算法对旋转机械故障进行诊断研究,结果表明,加快了网络的收敛速度.证明该算法比BP算法精度更高且收敛速度更快.  相似文献   

15.
深度学习因强大的特征提取能力已逐渐成为旋转机械故障诊断的主要方法。但深层模型缺乏领域适应能力,工况变化时性能衰退严重。迁移学习为解决变工况诊断问题提供新的途径。然而现有深度迁移学习方法大多仅对齐不同领域分布的均值中心,未考虑特征分布的流形结构,其适配性能仍难以应对不同工况复杂的机械故障信号。针对该问题,提出一种深度流形迁移学习方法,以堆叠自编码器为框架,在无监督预训练阶段同时利用源域和目标域样本训练,充分挖掘数据本质特征;针对模型微调,提出流行迁移框架,在适配分布差异同时还保持领域间特征分布结构的一致性。将新方法与现有迁移学习方法在旋转机械故障诊断案例进行充分的比较实验,结果表明,新方法优于现有方法,能显著提高变工况故障诊断精度。通过有效性分析在机理上进一步证明了融合目标域数据的无监督预训练策略和流形迁移微调策略对提高变工况故障诊断的有效性。  相似文献   

16.
李浩  王福忠  王锐 《测控技术》2017,36(6):20-23
为精确诊断级联式变频器功率器件开路故障,提出了一种基于小波包特征熵的故障信号提取方法.对采集到的级联式变频器相电压信号进行三层小波包分解,提取特征熵构造电压信号的特征熵向量,并以此作为故障诊断样本,利用概率神经网络进行故障诊断.仿真结果表明,基于小波包特征熵的信号提取方法在级联式变频器故障诊断的应用中具有较高的有效性与可行性.  相似文献   

17.
针对轴承振动信号具有的非平稳和故障诊断样本数据难以按需获取的问题,设计了一种基于小波包分解和EMD SVM的故障诊断方法;首先,采用Mallat塔式算法对信号进行降噪,实现信号的小波分解,获得重构后的故障诊断子频带信号;然后,在经典的EMD算法的基础上定义了改进的EMD算法,采用改进的EMD算法对经过小波包降噪的故障诊断子频带信号进行特征提取,从而获得故障诊断特征向量;最后,采用适合小样本分类的SVM进行故障诊断,将经过小波包降噪和EMD特征提取的样本数据用于训练SVM,得到用于故障诊断的多个二分类SVM故障诊断模型,通过投票机制来确定样本数据最终对应的故障诊断类别:在Matlab环境下对轴承故障诊断进行实验,实验结果证明了文中基于小波包和EMD-SVM的方法一种适用于小样本的故障诊断方法,且与其它方法相比,具有诊断效率高和精度高的优点.  相似文献   

18.
基于小波和神经网络的异步电机转子故障诊断方法研究   总被引:6,自引:0,他引:6  
基于小波包变换的频率划分特性.对定子电流的Park矢量模信号进行小波包分解,建立了转子断条的故障特征矢量,准确地提取了转子断条故障的特征信息.克服了传统基于FFT分析方法难以提取故障特征频率分量的难点,结合BP神经网络非线性映射及分类识别的优点,将BP神经网络应用于电机转子断务故障的识别,实验结果表明,该方法可实现转子断条故障的可靠诊断。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号