首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Highly fluorescent excited‐state charge‐transfer complexes (exciplexes) formed at the interfacial region between a polymeric donor matrix, here, poly(N‐vinylcarbazole), and embedded nanostructured acceptors are characterized for their photophysical properties. Exciplex‐to‐exciton emission switching is observed after solvent vapor annealing (SVA) due to the size evolution of the nanostructures beyond the exciton diffusion length. Color‐tunable exiplex emission (sky blue, green, and orange) is demonstrated for three different nanostructured acceptors with the same HOMO–LUMO gap (i.e., the same blue excitonic emission) but with different electron affinity. White‐emitting poly(N‐vinylcarbazole) film is also fabricated, simply by incorporating mixed supramolecular acceptors, which provide independent exciplex emissions. This study presents important insights into the excited‐state intermolecular interaction at the well‐defined nanoscale interface and suggests an efficient way to obtain multicolored exciplex emissions.  相似文献   

2.
New spiro‐bisilole molecules functionalized with nitrogen‐containing heterocyclic groups including 7‐azaindolyl, indolyl, and 2,2′‐dipyridylamino have been synthesized. These molecules are found to display good chemical and thermal stability. They are luminescent in solution and in the solid state with an emission color ranging from blue–green to yellow, depending on the functional group. In the solid state, they display high photoluminescence quantum efficiency (32–40 %). The electroluminescence properties for one of the new molecules, 2,3,3′,4,4′,5‐hexaphenyl‐2′,5′‐bis(p‐2,2′‐dipyridylaminophenyl)spiro‐bisilole, have been investigated by fabricating single‐layer and double‐layer electroluminescent devices. The double‐layer device, in which N,N′‐bis(1‐naphthyl)‐N,N′‐diphenylbenzidine acts as the hole‐transport layer and the functionalized spiro‐bisilole functions as the emitter (emission wavelength = 566 nm) and the electron‐transport layer, displays a brightness of 8440 cd m–2 at 9 V with a current efficiency of 1.71 cd A–1. No evidence of exiplex emission is observed.  相似文献   

3.
Dye‐sensitized solar cells (DSSC) are a realistic option for converting light to electrical energy. Hybrid architectures offer a vast materials library for device optimization, including a variety of metal oxides, organic and inorganic sensitizers, molecular, polymeric and electrolytic hole‐transporter materials. In order to further improve the efficiency of solid‐state dye‐sensitized solar cells, recent attention has focused on using light absorbing polymers such as poly(3‐hexylthiophene) (P3HT), to replace the more commonly used “transparent” 2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenyl‐amine)9,9′spiro‐bifluorene (spiro‐OMeTAD), in order to enhance the light absorption within thin films. As is the case with spiro‐OMeTAD based solid‐state DSSC, the P3HT‐based devices improve significantly with the addition of lithium bis(trifluoromethylsulfonyl)imide salts (Li‐TFSI), although the precise role of these additives has not yet been clarified in solid‐state DSCs. Here, we present a thorough study on the effect of Li‐TFSI in P3HT based solid‐state DSSC incorporating an indolene‐based organic sensitizer termed D102. Employing ultrafast transient absorption and cw‐emission spectroscopy together with electronic measurements, we demonstrate a fine tuning of the energetic landscape of the active cell components by the local Coulomb field induced by the ions. This increases the charge transfer nature of the excited state on the dye, significantly accelerating electron injection into the TiO2. We demonstrate that this ionic influence on the excited state energy is the primary reason for enhanced charge generation with the addition of ionic additives. The deepening of the relative position of the TiO2 conduction band, which has previously been thought to be the cause for enhanced charge generation in dye sensitized solar cells with the addition of lithium salts, appears to be of minor importance in this system.  相似文献   

4.
With the emergence of antibiotic resistance, developing new antibiotics and therapies for combating bacterial infections is urgently needed. Herein, a series of quaternized fluorescent silicon nanoparticles (SiNPs) are facilely prepared by the covalent reaction between amine‐functionalized SiNPs and carboxyl‐containing N‐alkyl betaines. It is found that the bactericidal efficacy of these quaternized SiNPs increases with the length of the N‐alkyl chain, and SiNPs conjugated with N,N‐dimethyl‐N‐octadecylbetaine (BS‐18), abbreviated as SiNPs‐C18, show the best antibacterial effect, whose minimum inhibitory concentrations for Gram‐positive bacteria are 1–2 μg mL?1. In vivo tests further confirm that SiNPs‐C18 have excellent antibacterial efficacy and greatly reduce bacterial load in the infectious sites. The SiNPs‐C18 exhibit low cytotoxicity toward mammalian cells (including normal liver and lung cells, red blood cells, and macrophages), enabling them to be useful for clinical applications. Besides, the quaternized SiNPs exhibit polarity‐dependent fluorescence emission property and can selectively image Gram‐positive bacteria, thereby providing a simple method to successfully differentiate Gram‐positive and Gram‐negative bacteria. The present work represents the first example that successfully turns fluorescent SiNPs into metal‐free NP‐based antibiotics with simultaneous bacterial imaging and killing capability, which broadens the applications of fluorescent SiNPs and advances the development of novel antibacterial agents.  相似文献   

5.
A new series of charge neutral Os(II) isoquinolyl triazolate complexes ( 1 – 4 ) with both trans and cis arrangement of phosphine donors are synthesized, and their structural, electrochemical and photophysical properties are established. In sharp contrast to the cis‐arranged complexes 2 – 4 , the trans derivative 1 , which shows a planar arrangement of chromophoric N‐substituted chelates, offers the most effective extended π‐delocalization and hence the lowest excited state energy gap. These complexes exhibit phosphorescence with peak wavelengths ranging from 692–805 nm in degassed CH2Cl2 at room temperature. Near‐infrared (NIR)‐emitting electroluminescent devices employing 6 wt % of 1 (or 4 ) doped in Alq3 host material are successfully fabricated. The devices incorporating 1 as NIR phosphor exhibit fairly intense emission with a peak wavelength at 814 nm. Forward radiant emittance reaches as high as 65.02 µW cm?2, and a peak EQE of ~1.5% with devices employing Alq3, TPBi and/or TAZ as electron‐transporting/exciton‐blocking layers. Upon switching to phosphor 4 , the electroluminescence blue shifts to 718 nm, while the maximum EQE and radiance increase to 2.7% and 93.26 (μW cm?2) respectively. Their performances are optimized upon using TAZ as the electron transporting and exciton‐blocking material. The OLEDs characterized represent the only NIR‐emitting devices fabricated using charge‐neutral and volatile Os(II) phosphors via thermal vacuum deposition.  相似文献   

6.
Aggregation‐induced emission luminogens (AIEgens) that undergo excited‐state intramolecular proton transfer (ESIPT) have many applications in bioimaging since they have high quantum efficiency in the aggregated state and a low background signal in aqueous solutions because of their large Stokes shift. One disadvantage of many of the AIEgens with ESIPT that has been described so far is that they require time‐consuming synthesis and the use of toxic reagents. Another disadvantage with most of these materials is that they are only used for bioimaging in cells and are unsuitable for in vivo bioimaging. Herein, a new AIEgen with ESIPT, quercetin (QC) is described, which is easily prepared from Sophora japonica. AIE is attributed to crystallization‐promoted keto emission. The fluorescence is temperature dependent and shows strong resistance to photobleaching. QC AIEgen with ESIPT is shown to have excellent biocompatibility and is successfully used for bioimaging both in cellular cytoplasm and in vivo.  相似文献   

7.
A sensitization‐based cascade energy transfer channel is proposed to boost the electroluminescent performances of the solution‐processed near‐infrared organic light‐emitting devices (OLEDs) featuring an electroluminescent peak of 786 nm from a new fluorescent emitter of N4,N4,N9,N9‐tetra‐p‐tolylnaphtho[2,3‐c][1,2,5]thiadiazole‐4,9‐diamine (NZ2mDPA) with unique aggregation‐induced emission (AIE) property. The optimized device is composed of 4,4′‐N,N‐dicarbazole‐biphenyl (CBP) as the host, bis(2‐phenyl‐1,3‐benzothiozolato‐N,C2′)iridium (Ir(bt)2(acac)) as the sensitizer, and NZ2mDPA as the emitter, where the cascade energy transfer can occur via two steps realizing unexpected triplet–singlet energy transfer by the Förster mechanism. The first step features efficient triplet harvesting from CBP to Ir(bt)2(acac), and then the second step involves in resonant energy transfer from the phosphorescent sensitizer to the near‐infrared AIE emitter of NZ2mDPA, which finally endows two channels of harvesting singlet and triplet excitons. The unique scheme achieves not only more efficient Förster energy transfer but also the higher utilization efficiency of triplet excitons. As a result, the near‐infrared OLEDs can realize a factor of 2.7 enhancement of external quantum efficiency by employing the phosphor‐sensitized AIE lumogen compared with the commonly used binary host–guest system.  相似文献   

8.
This study reveals the mechanism of the dual‐emission properties for asymmetrical diphenylsulfone and diphenylketone derivatives. A series of asymmetrical diphenylketone and diphenylsulfone derivatives with dual‐emission properties are designed and synthesized. By single crystal structure analyses, various photophysical studies, and 2D 1H–1H NOSEY NMR studies, the lower energy emission bands in the dual‐emission spectra are successfully assigned to hydrogen‐bonding‐assisted intermolecular charge transfer emission. The emission properties of these compounds can easily be tuned in both solid state and solution state by destroying or strengthening the intermolecular hydrogen bonding. In addition, thermally activated delayed fluorescence characteristics for the intermolecular charge transfer emissions are also observed. The control of the intermolecular and intramolecular charge transfers serves as the basis for the generation of the white‐light emission. For compound CPzPO, nearly pure white‐light emission with CIE coordinates of (0.31, 0.32) is easily achieved by precipitation from dichloromethane and hexane mixed solvent system. These results clearly give an insight into the dual‐emission properties and provide a rational strategy for the design and synthesis of single‐component white‐light‐emitting materials and mechanoresponsive light‐emitting materials.  相似文献   

9.
A new series of quadrupolar type two‐photon absorption (2PA) chromophores 3 – 9 bearing a core arylamine‐[a,c]phenazine‐arylamine motif are synthesized in high yields. Palladium‐catalyzed Stille coupling and C? N coupling reactions are utilized to prepare target chromophores. Detailed characterization and systematic studies of these molecules, including absorption and fluorescence emission, are conducted. These compounds are found to exhibit very large 2PA cross section values, for example, ~7000 GM at 800 nm for 8 in toluene. Two‐photon‐induced fluorescence imaging is successfully demonstrated in vitro using compound‐ 8 ‐encapsulated silica nanoparticles with excellent bio‐compatibility. In combination with the capability of both one‐ and two‐photon singlet‐oxygen sensitizations, this nanocomposite demonstrates its promising potential in dual functionality toward two‐photon fluorescence imaging and two‐photon photodynamic therapy.  相似文献   

10.
This paper reports on the two‐photon absorption (TPA) and related up‐converted emission properties of a novel series of chromophores containing ladder‐type oligo‐p‐phenylenes with various π‐conjugation lengths. The design and synthesis of these ladder‐type two‐photon chromophores are first discussed. An increase in the π‐conjugated length of the ladder‐type oligo‐p‐phenylene for these chromophores leads to an increase in TPA cross‐section together with an increased fluorescence quantum yield. These chromophores exhibit high fluorescence quantum yields because of the rigid planar structure of the ladder‐type oligomers. The chromophore with an enhanced TPA cross‐section together with an increased fluorescence quantum yield would provide significant benefits for two‐photon excited fluorescence based applications. An improved optical limiting behavior was also demonstrated using the ladder‐type pentaphenylene cored chromophore.  相似文献   

11.
The organic material 4,4′‐bis[(N‐carbazole)styryl]biphenyl (BSBCz) is an excellent gain medium for laser devices. However, BSBCz laser output quickly degrades during photoexcitation, which is an issue that must be overcome before it can be used for practical applications. In this study, the photodegradation mechanisms of BSBCz are investigated with the aim of enhancing its excited‐state stability. The photodegradation of BSBCz is attributed to instability of the triplet excited states that would occasionally decompose into other species. This decomposition reduces absorption and introduces exciton quenchers. Incorporating the triplet managing material 9,10‐di(naphtha‐2‐yl)anthracene (ADN) into BSBCz films greatly improves photoluminescence and amplified spontaneous emission stability because of the effective removal of the unstable triplets by ADN. This triplet managing method makes it possible to increase operational stability for BSBCz‐based organic light‐emitting diodes. Therefore, these results will contribute toward the fabrication of stable optically and electrically pumped organic laser diodes.  相似文献   

12.
Here, a detailed characterization of the optical gain properties of sky‐blue‐light‐emitting pyrene‐cored 9,9‐dialkylfluorene starbursts is reported; it is shown that these materials possess encouragingly low laser thresholds and relatively high thermal and environmental stability. The materials exhibit high solid‐state photoluminescence (PL) quantum efficiencies (>90%) and near‐single‐exponential PL decay transients with excited state lifetimes of ~1.4 ns. The thin‐film slab waveguide amplified spontaneous emission (ASE)‐measured net gain reaches 75–78 cm?1. The ASE threshold energy is found to remain unaffected by heating at temperatures up to 130 °C, 40 to 50 °C above Tg. The ASE remained observable for annealing temperatures up to 170 or 200 °C. 1D distributed feedback lasers with 75% fill factor and 320 nm period show optical pumping thresholds down to 38–65 Wcm?2, laser slope efficiencies up to 3.9%, and wavelength tuning ranges of ~40 nm around 471–512 nm. In addition, these lasers have relatively long operational lifetimes, with N1/2 ≥ 1.1 × 105 pulses for unencapsulated devices operated at ten times threshold in air.  相似文献   

13.
1,4‐di(4′‐N,N‐diphenylaminostyryl)benzene (DPA‐DSB) is a well known compound with a large two‐photon absorption (TPA) section and strong fluorescence in solution. However, the ease with which it crystallizes results in the formation of discontinuous crystalline phases during vacuum deposition processes, thereby greatly limiting its applicability in solid‐state devices. A cruciform dimer of DPA‐DSB, 2,5,2′,5′‐tetra(4′‐N,N‐diphenylaminostyryl)biphenyl (DPA‐TSB) is reported, wherein two DPA‐DSB molecules are linked through a central biphenyl bond. The DPA‐TSB molecules take on a cruciform configuration because of the steric crowding around the central biphenyl core, which has the effect of efficiently suppressing crystalline and intermolecular interactions. The neat DPA‐TSB solid shows strong green–blue fluorescence because of both steady‐state absorption as well as TPA. The DPA‐TSB solid exhibits a photoluminescence (PL) efficiency (ηsolid) of 29 % and a solid‐state two‐photon action cross section (δηsolid) of 954 GM (1 GM = 1 × 10–50 cm4 s photon–1 molecule–1), which is much greater than for the model compound DPA‐DSB (ηsolid = 16 % and δηsolid = 150 GM, where δ is the TPA cross section and η is the fluorescence quantum yield). Based on its high PL efficiency, good film‐forming ability, and strong TPA, DPA‐TSB seems to be a good candidate for applications in solid‐state optical devices.  相似文献   

14.
Organic materials with both high electron mobility and strong solid‐state emission are rare although for their importance to advanced organic optoelectronics. In this paper, triphenylethylenes with varying number of perylenediimide (PDI) unit (TriPE‐nPDIs, n = 1?3) are synthesized and their optical and charge‐transporting properties are systematically investigated. All the molecules exhibit strong solid‐stated near infrared (NIR) emission and some of them exhibit aggregation‐enhanced emission characteristics. Organic field‐effect transistors (OFETs) using TriPE‐nPDIs are fabricated. TriPE‐3PDI shows the best performance with maximum quantum yield of ≈30% and optimized electron mobility of over 0.01 cm2 V?1 s?1, which are the highest values among aggregation‐induced emission luminogens with NIR emissions reported so far. Photophysical property investigation and theoretical calculation indicate that the molecular conformation plays an important role on the optical properties of TriPE‐nPDI, while the result from film microstructure study reveals that the film crystallinity influences greatly their OFET device performance.  相似文献   

15.
In this paper, the bis‐condensed 4‐(dicyanomethylene)‐2‐methyl‐6‐[p‐(dimethylamino)styryl]‐4H‐pyran ( DCM) derivatives are introduced as a new class of red dye for organic light‐emitting devices (OLEDs). They showed more red‐shifted emission than the mono‐substituted DCM derivatives and the emission maxima increased as the electron‐donating ability of the aromatic donor group increased. On the basis of these results, red light‐emitting devices were fabricated with bis‐condensed DCM derivatives as red dopants. For a device of configuration ITO/TPD/Alq3 + DADB (5.2 wt.‐%)/Alq3/Al (where ITO is indium tin oxide, TPD is N,N′‐diphenyl‐N,N′‐bis(3‐methylphenyl)‐1,1′‐biphenyl‐4,4′‐diamine, Alq3 is tris(8‐hydroxyquinoline) aluminum, and DADB is [2,6‐bis[2‐[5‐(dibutylamino)phenyl]vinyl]‐4H‐pyran‐4‐ylidene]propanedinitrile), pure red emission was observed with Commission Internationale de l’Eclairage (CIE 1931) coordinates of (0.658, 0.337) at 25 mA/cm2.  相似文献   

16.
Aiming for highly efficient blue electroluminescence, we have designed and synthesized a novel class of tetraphenylimidazole‐ based excited‐state intramolecular proton‐transfer (ESIPT) molecules with covalently linked charge‐transporting functional groups (carbazole‐ and oxadiazole‐functionalized hydroxyl‐substituted tetraphenylimidazole (HPI), i.e., HPI‐Cbz and HPI‐Oxd, respectively). High Tg (ca. 130 °C) amorphous films of HPI‐Cbz and HPI‐Oxd showed intense and ideal blue‐light emission (λmax = 462 and 468 nm, ΦPL = 0.44 and 0.38) with a large Stokes shift of over 160 nm and a narrow full width at half‐maximum of less than 65 nm. Organic light‐emitting devices using HPI‐Cbz and HPI‐Oxd as the emitting layer generated an efficient blue electroluminescence (EL) emission peaking at around 460 nm with excellent CIE coordinates of (x, y) = (0.15, 0.11). A maximum external quantum efficiency of 2.94%, and a maximum brightness of 1 229 cd m−2 at 100 mA cm−2, as well as a low turn‐on voltage of 4.8 V were achieved in this work.  相似文献   

17.
A series of inert and photostable encapsulated lanthanide(III) complexes—based on dendritic anthracene ligands—is shown for the first time to exhibit strong near‐IR emission bands via efficient energy transfer from the excited states of the peripheral antenna to the Ln3+ ions (Er3+, Yb3+, and Nd3+). A significant decrease in the fluorescence of the anthracene ligand is accompanied by a strong increase in the near‐IR emission of the Ln3+ ions. The near‐IR emission intensities of Ln3+ ions in the encapsulated Ln3+–dendrimer complexes are dramatically enhanced on increasing the generation number (n) of dendrons, owing to site‐isolation and light‐harvesting effects. Furthermore, a first attempt is made to distinguish between the site‐isolation and light‐harvesting effects in the present complexes. Photophysical studies indicate the sensitization of Ln3+ luminescence by energy transfer through the excited singlet state of the anthracene ligands, and the energy‐transfer efficiency between the dendritic anthracene ligands and the Ln3+ ion is evaluated to be in the range of 90 to 97 %. Their energy‐transfer efficiency is in good agreement with the result that the biexponential decays contain a radiative decay of anthracene units (< ca. 10 %) and an energy‐transfer component (> ca. 90 %) from the excited state of anthracene ligands to the Ln3+ ions. Time‐resolved luminescence spectra show monoexponential decays with a lifetime of 2 μs for the Er3+ ion 11 μs for the Yb3+ ion and 0.7 μs for the Nd3+ ion in thin films, and calculated intrinsic quantum yields of the Ln3+ ions are in the range of ca. 0.025 to 0.55 %.  相似文献   

18.
The cover shows an organic light‐emitting diode with remote metallic cathode, reported by Sarah Schols and co‐workers on p. 136. The metallic cathode is displaced from the light‐emission zone by one to several micrometers. The injected electrons accumulate at an organic heterojunction and are transported to the light‐emission zone by field‐effect. The achieved charge‐carrier mobility and in combination with reduced optical absorption losses because of the remoteness of the cathode may lead to applications as waveguide OLEDs and possibly a laser structure. (The result was obtained in the EU‐funded project “OLAS” IST‐ FP6‐015034.) We describe an organic light‐emitting diode (OLED) using field‐effect to transport electrons. The device is a hybrid between a diode and a field‐effect transistor. Compared to conventional OLEDs, the metallic cathode is displaced by one to several micrometers from the light‐emitting zone. This micrometer‐sized distance can be bridged by electrons with enhanced field‐effect mobility. The device is fabricated using poly(triarylamine) (PTAA) as the hole‐transport material, tris(8‐hydroxyquinoline) aluminum (Alq3) doped with 4‐(dicyanomethylene)‐2‐methyl‐6‐(julolindin‐4‐yl‐vinyl)‐4H‐pyran (DCM2) as the active light‐emitting layer, and N,N′‐ditridecylperylene‐3,4,9,10‐tetracarboxylic diimide (PTCDI‐C13H27), as the electron‐transport material. The obtained external quantum efficiencies are as high as for conventional OLEDs comprising the same materials. The quantum efficiencies of the new devices are remarkably independent of the current, up to current densities of more than 10 A cm–2. In addition, the absence of a metallic cathode covering the light‐emission zone permits top‐emission and could reduce optical absorption losses in waveguide structures. These properties may be useful in the future for the fabrication of solid‐state high‐brightness organic light sources.  相似文献   

19.
The present work describes the synthesis of difluoro‐boradiazaindacenes (Bodipy) functionalized at the central 8‐position by phenylamino moieties easily transformable into phenyl amide scaffoldings. Molecules carrying three linear or branched chains were prepared and characterized. An X‐ray crystal structure for the pivotal trimethoxyphenyl‐Bodipy derivative was determined, and the packing is discussed in terms of molecular interactions; a key feature for the formation of thin films. All of the dyes are thermally stable up to 170 °C but no liquid‐crystalline phases are observed. Reversible reduction and oxidation processes occur around +0.97 and −1.34 V, respectively, versus saturated calomel electrode in solution and the electroactivity and photoluminescence are maintained in thin films produced by vacuum evaporation. Interestingly, two distinct emissions are observed at 550 and 635 nm by electroluminescence of the trimethoxyphenyl‐Bodipy derivative, corresponding to the luminescence of isolated molecules and dimers, respectively. Doping Alq3 films with this Bodipy molecule by vacuum evaporation produces organic light‐emitting diodes (OLEDs) in which very efficient energy transfer from the Alq3 matrix to the Bodipy occurs by a resonance mechanism involving the first Bodipy excited state. Yellow light (550 nm, 344 cd m−2 at 15 V) is emitted at low doping concentration (7 mol %), whereas red light (635 nm, 125 cd m−2 at 15 V) is emitted at higher concentration (19 mol %). Dispersion of the Bodipy into a fluorescent poly(N‐vinylcarbazole) polymer (PVK) (≈3 mol % per repeating unit of PVK) by solution processing exclusively produces yellow emission owing to the isolated Bodipyfluorophore (550 nm, 213 cd m−2 at 15 V). The second excited state of the Bodipy dye is likely involved during energy transfer from the PVK matrix.  相似文献   

20.
White‐light‐emitting electrochemical cells (WLECs) still represent a significant milestone, since only a few examples with moderate performances have been reported. Particularly, multiemissive white emitters are highly desired, as a paradigm to circumvent phase separation and voltage‐dependent emission color issues that are encountered following host:guest and multilayered approaches. Herein, the origin of the exclusive white ternary electroluminescent behavior of BN‐doped nanographenes with a B3N3 doping pattern (hexa‐perihexabenzoborazinocoronene) is rationalized, leading to one of the most efficient (≈3 cd A?1) and stable‐over‐days single‐component and single‐layered WLECs. To date, BN‐doped nanographenes have featured blue thermally activated delayed fluorescence (TADF). This doping pattern provides, however, white electroluminescence spanning the whole visible range (x/y CIE coordinates of 0.29–31/0.31–38 and average color rendering index (CRI) of 87) through a ternary emission involving fluorescence and thermally activated dual phosphorescence. This temperature‐dependent multiemissive mechanism is operative for both photo‐ and electroluminescence processes and holds over the device lifespan, regardless of the device architecture, active layer composition, and operating conditions. As such, this work represents a new stepping‐stone toward designing a new family of multiemissive white emitters based on BN‐doped nanographenes that realizes one of the best‐performing single‐component white‐emitting devices compared to the prior‐art.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号