首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the arrival of intelligent terminals, tactile sensors which are capable of sensing various external physical stimuli are considered among the most vital devices for the next generation of smart electronics. To create a self‐powered tactile sensor system that can function sustainably and continuously without an external power source is of crucial significance. An overview of the development in self‐powered tactile sensor array system based on the triboelectric effect is systematically presented. The combination of multi‐functionalization and high performance of tactile sensors aimed at achieving highly comprehensive performance is presented. For the tactile sensor unit, a development is summarized based on the two primary modes which are vertical contact–separation and single‐electrode. For the pressure mapping array, the resolution is significantly enhanced by the novel cross‐type configuration based on the single‐electrode mode. Integrated with other mechanisms, the performance will be further elevated by broadening of the detect range and realizing of visualization of pressure imaging. Then, two main applications of human–machine interaction (HMI) and trajectory monitoring are comprehensively summarized. Finally, the future perspectives of self‐powered tactile sensor system based on triboelectric effect are discussed.  相似文献   

2.
Flexible tactile sensors are garnering substantial interest for various promising applications, including artificial intelligence, prosthetics, healthcare monitoring, and human–machine interactions (HMI). However, it still remains a critical challenge in developing high-resolution tactile sensors without involving high-cost and complicated manufacturing processes. Herein, a flexible high-resolution triboelectric sensing array (TSA) for self-powered real-time tactile sensing is developed through a facile, mask-free, high-efficient, and environmentally friendly laser direct writing technique. A 16 × 16 pixelated TSA with a resolution of 8 dpi based on patterned laser-induced graphene (LIG) electrodes (7 Ω sq−1) is fabricated by the complementary intersection overlapping between upper and lower aligned semicircular electrode arrays. With the especially patterning design, the complexity of TSA and the number of data channels is reduced. Meanwhile, the TSA platform exhibits excellent durability and synchronicity and enables the achievement of real-time visualization of multipoint touch, sliding, and tracking motion trajectory without power consumption. Furthermore, a smart wireless controlled HMI system, composed of a 9-digital arrayed touch panel based on a LIG-patterned triboelectric nanogenerator, is constructed to control personal electronics wirelessly. Consequently, the self-powered TSA as a promising platform demonstrates great potential for an active real-time tactile sensing system, wireless controlled HMI, security identification and, many others.  相似文献   

3.
1 IntroductionCapacitivepressuresensorsareknowntohavehighsensitivity ,robuststructure ,lowsensitivitytoouterenvironmenteffectsandnoturn ontemperaturedrift.However ,largenonlinearityisthedrawbackofsuchdevicesduetotheinverserelationbetweenca pacitanceandspacingbetweentwoelectrodes.Muchefforthasbeenmadetoimprovethelinearityofca pacitivepressuresensors .Amongthoseattempts ,touchmodecapacitivepressuresensorisamoresuc cessfuldesignforinthatnotonlygoodlinearityisgotten ,butalsolargeopera tingpressur…  相似文献   

4.
Energy‐harvesting electronic skin (E‐skin) is highly promising for sustainable and self‐powered interactive systems, wearable human health monitors, and intelligent robotics. Flexible/stretchable electrodes and robust energy‐harvesting components are critical in constructing soft, wearable, and energy‐autonomous E‐skin systems. A stretchable energy‐harvesting tactile interactive interface is demonstrated using liquid metal nanoparticles (LM‐NPs)‐based electrodes. This stretchable energy‐harvesting tactile interface relies on triboelectric nanogenerator composed of a galinstan LM‐NP‐based stretchable electrode and patterned elastic polymer friction and encapsulation layer. It provides stable and high open‐circuit voltage (268 V), short‐circuit current (12.06 µA), and transferred charges (103.59 nC), which are sufficient to drive commercial portable electronics. As a self‐powered tactile sensor, it presents satisfactory and repeatable sensitivity of 2.52 V·kPa?1 and is capable of working as a touch interactive keyboard. The demonstrated stretchable and robust energy‐harvesting E‐skin using LM‐NP‐based electrodes is of great significance in sustainable human–machine interactive system, intelligent robotic skin, security tactile switches, etc.  相似文献   

5.
With the increasing interest and demand for epidermal electronics, a strong interface between a sensor and a biological surface is essential, yet achieving such interface is still a challenge. Here, a calcium (Ca)‐modified biocompatible silk fibroin as a strong adhesive for epidermal electronics is proposed and the physical principles behind its interfacial and adhesive properties are reported. A strong adhesive characteristic (>800 N m?1) is observed because of the increase in both viscoelastic property and mechanical interlocking through the incorporation of Ca ions. Furthermore, additional key characteristics of the Ca‐modified silk: reusability, stretchability, biocompatibility, and conductivity, are reported. These characteristics enable a wide range of applications as demonstrated in four epidermal electronic systems: capacitive touch sensor, resistive strain sensor, hydrogel‐based drug delivery, and electrocardiogram monitoring sensor. As a reusable, biocompatible, conductive, and strong adhesive with water‐degradability, the Ca‐modified silk adhesive is a promising candidate for the next‐generation adhesive for epidermal biomedical sensors.  相似文献   

6.
Developing versatile and high sensitivity sensors is beneficial for promoting flexible electronic devices and human-machine interactive systems. Researchers are working on the exploration of various active sensing materials toward broad detection, multifunction, and low-power consumption. Here, a versatile ion-gel fibrous membrane is presented by electrospinning technology and utilized to construct capacitive sensors and triboelectric nanogenerator (TENG). The iontronic capacitive sensor exhibits inherently favorable sensitivity and repeatability, which retains long-term stability after 5000 cycles. The capacitive sensor can also detect a clear pulse waveform at the human wrist and enable the mapping of pressure distribution by a capacitive sensory matrix. For the iontronic TENG, the maximum peak power is 54.56 µW and can be used to power commercial electronics. In addition, the prepared iontronic TENG array can achieve interactive, rapidly responsive, and accurate dynamic monitoring, which broadens the exploration to direct and effective sensory devices. The versatile ion-gel fibrous membrane is promising to provide an outstanding approach for physiological detection, biomechanical energy harvesting, human-machine interaction, and self-powered monitoring systems.  相似文献   

7.
Transparent electrodes have been widely used for various electronics and optoelectronics, including flexible ones. Many nanomaterial‐based electrodes, in particular 1D and 2D nanomaterials, have been proposed as next‐generation transparent and flexible electrodes. However, their transparency, conductivity, large‐area uniformity, and sometimes cost are not yet sufficient to replace indium tin oxide (ITO). Furthermore, the conventional ITO is quite rigid and susceptible to mechanical fractures under deformations (e.g., bending, folding). In this study, the authors report new advances in the design, fabrication, and integration of wearable and transparent force touch (touch and pressure) sensors by exploiting the previous efforts in stretchable electronics as well as novel ideas in the transparent and flexible electrode. The optical and mechanical experiment, along with simulation results, exhibit the excellent transparency, conductivity, uniformity, and flexibility of the proposed epoxy‐copper‐ITO (ECI) multilayer electrode. By using this multi‐layered ECI electrode, the authors present a wearable and transparent force touch sensor array, which is multiplexed by Si nanomembrane p‐i‐n junction‐type (PIN) diodes and integrated on the skin‐mounted quantum dot light‐emitting diodes. This novel integrated system is successfully applied as a wearable human–machine interface (HMI) to control a drone wirelessly. These advances in novel material structures and system‐level integration strategies create new opportunities in wearable smart displays.  相似文献   

8.
基于触摸显示屏的人机交互手势分析   总被引:5,自引:4,他引:1  
针对触摸显示屏的操作特点提出了一种基于元动作的触摸手势分类和表示方法,根据人机交互要求定义了一套笔画触摸手势,提出了基于RBF神经网络的笔画触摸手势训练和识别方法。测试结果表明,所提出的方法能够快速、准确地对触摸手势进行训练和识别,可以为带触摸屏的设备提供一个更加自然、直观的人机交互手段。  相似文献   

9.
Recently, macroporous graphene monoliths (MGMs), with ultralow density and good electrical conductivity, have been considered as excellent pressure sensors due to their excellent elasticity with a rapid rate of recovery. However, MGMs can only exhibit good sensitivity when the strain is higher than 20%, which is undesirable for touch‐type pressure sensors, such as artificial skin. Here, an innovative method for the fabrication of freestanding flexible graphene film with bubbles decorated on honeycomb‐like network is demonstrated. Due to the switching effect depended on “point‐to‐point” and “point‐to‐face” contact modes, the graphene pressure sensor has an ultrahigh sensitivity of 161.6 kPa?1 at a strain less than 4%, several hundred times higher than most previously reported pressure sensors. Moreover, the graphene pressure sensor can monitor human motions such as finger bending and pulse with a very low operating voltage of 10 mV, which is sufficiently low to allow for powering by energy‐harvesting devices, such as triboelectric generators. Therefore, the high sensitivity, low operating voltage, long cycling life, and large‐scale fabrication of the pressure sensors make it a promising candidate for manufacturing low‐cost artificial skin.  相似文献   

10.
With the fast development of integrated circuit technology and internet of things, sensors with multifunctional characteristics are desperately needed. This work presents an integrated electromagnetic‐triboelectric active sensor (ETAS) for simultaneous detection of multiple mechanical triggering signals. The good combination of a contact‐separation mode triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) realizes the complement of their individual advantages. The theoretical calculation and analysis of EMG and TENG are performed to understand the relationship between their output and the external mechanical signals. The experimental results show that the output voltage of TENG part is suitable to detect the magnitude of the external triggering force with a sensitivity of about 2.01 V N?1. Meanwhile, the output current of EMG part is more appropriate to reflect the triggering velocity and the sensitivity is about 4.3 mA (m s?1)?1. Moreover, both the TENG part and the EMG part exhibit good stabilities after more than 20 000 cycles of force loading and unloading. One ETAS that can record the typing behavior of the finger precisely is demonstrated. In addition, the TENG part can harvest the mechanical energy during typing for possible powering of tiny electronics. This ETAS has promising applications in complex human–machine interface, personal identification, and security system.  相似文献   

11.
Motion vector sensors play an important role in artificial intelligence and internet of things. Here, a triboelectric vector sensor (TVS) based on a direct‐current triboelectric nanogenerator is reported, for self‐powered measuring various motion parameters, including displacement, velocity, acceleration, angular, and angular velocity. Based on the working mechanism of the contact‐electrification effect and electrostatic breakdown, a continuous DC signal can be collected to directly monitor moving objects free from environmental electromagnetic signal interference existing in conventional self‐powered TVSs with an alternative‐current signal output, which not only enhances the sensitivity of sensors, but also provides a simple solution to miniaturize the sensors. Its sensitivity is demonstrated to be equivalent to state‐of‐the‐art photoelectric technology by a comparative experiment in an intelligent mouse. Notably, an intelligent pen based on the miniaturized TVS is designed to realize motion trajectory tracing, mapping, and writing on the curved surface. This work provides a new paradigm shift to design motion vector sensors and self‐powered sensors in artificial intelligent and internet of things.  相似文献   

12.
The advancement of electronic skin envisions novel multifunctional human machine interfaces. Although motion sensing by detecting contact locations is popular and widely used in state‐of‐the‐art flexible electronics, noncontact localization exerts fascinations with unique interacting experiences. This paper presents a self‐powered noncontact electronic skin capable of detecting the motion of a surface electrified object across the plane parallel to that of the electronic skin based on electrostatic induction and triboelectric effects. The displacement of the object is calculated under the system of polar coordinates, with a resolution of 1.5 mm in the lengthwise direction and 0.76° in the angular direction. It can serve as a human machine interface due to its ability to sense noncontact motions. An additional self‐powered feature, enabled by its physical principles, solves the problem of power supply. This electronic skin consists of trilayers of polyethyleneterephthalate–indium tin oxide–polydimethylsiloxane (PDMS) films, and microstructured PDMS as the electrified layer, which can be achieved through simplified, low cost, and scalable fabrication. Transparency, flexibility, and less number of electrodes enable such electronic skin to be easily integrated into portable electronic devices, such as laptops, smart phones, healthcare devices, etc.  相似文献   

13.
To achieve the characteristics of better linearity, a new type of touch mode capacitive pressure sensor named as DDTMCPS is devised, which has a pair of deformable sensing diaphragms. Compared to present touch mode capacitive pressure sensors, the new sensor is characterized by better linearity, and large linear operation range. Such a device also has high sensitivity, and other advantages of normal touch mode capacitive pressure sensor. In the case of such a novel sensor, the second diaphragm served as bottom electrode plays great roles in modifying the deflection of the first diaphragm served as top electrode, furthermore optimizing the performance of touch mode sensors. Silicon fusion bonding technology is advised to fabricate the novel device.  相似文献   

14.
Porous polymeric foams as dielectric layer for highly sensitive capacitive based pressure sensors have been extensively explored owing to their excellent flexibility and elasticity. Despite intensive efforts, most of previously reported porous polymer foams still suffer from difficulty in further lowering the attainable density limit of ≈0.1 g cm?3 while retaining high sensitivity and compressibility due to the limitations on existing fabrication techniques and materials. Herein, utilizing 3D interconnected networks of few‐layer hexagonal boron nitride foams (h‐BNFs) as supporting frameworks, lightweight and highly porous BN/polydimethylsiloxane composite foams (BNF@PDMS) with densities reaching as low as 15 mg cm?3 and permittivity close to that of air are fabricated. This is the lightest PDMS‐based foam reported to date. Owing to the synergistic effects between BN and PDMS, these lightweight composite foams possess excellent mechanical resilience, extremely high compressibility (up to 95% strain), good cyclic performance, and superelasticity. Being electrically nonconductive, the potential application of BNF@PDMS as a dielectric layer for capacitive sensors is further demonstrated. Remarkably, the as‐fabricated device can perform multiple sensing functions such as noncontact touch sensor, environmental monitoring sensor, and high sensitivity pressure sensor that can detect extremely low pressures of below 1 Pa.  相似文献   

15.
Pressure sensors with highly sensitive and flexible characteristics have extensive applications in wearable electronics, soft robotics, human–machine interface, and more. Herein, an effective strategy is explored to enhance the sensitivity of the capacitive pressure sensor by fabricating a dielectric hybrid sponge consisting of calcium copper titanate (CaCu3Ti4O12, CCTO), a giant dielectric permittivity material, in polyurethane (PU). An ultrasoft CCTO@PU hybrid sponge is fabricated via dip‐coating the PU sponge into surface‐modified CCTO nanoparticles using 3‐aminopropyl triethoxysilane. The overall results show that the –NH2 functionalized CCTO attributes proper adhesion of CCTO with the –OCN group of the PU to enhance interfacial polarization leading to a high dielectric permittivity (167.05) and low loss tangent (0.71) beneficial for flexible pressure sensing applications. Moreover, the as‐prepared CCTO@PU hybrid sponge at 30 wt% CCTO concentration exhibits excellent electromechanical properties with an ultralow compression modulus of 27.83 kPa and a high sensitivity of 0.73 kPa?1 in a low‐pressure regime (<1.6 kPa). Finally, pressure and strain sensing performance is demonstrated for the detection of human activities by mounting the sensor on various parts of the human body. The work reveals a new opportunity for the facile fabrication of high performance CCTO‐based capacitive sensors with multifunctional properties.  相似文献   

16.
Research on transient wearable electronics with stretchable components is of increasing interest because of their abilities to conform seamlessly to human tissues and, more interestingly, disappear from the environment when disposed. To wear them comfortably, their component materials must be pliable, tough, stretchable, biocompatible, and disintegrable. However, most biodegradable materials are not stretchable or tough, limiting their use in transient wearable electronics. Herein, these challenges are addressed by demonstrating a biodegradable nanofiber (NF)-reinforced water-borne polyurethane (NFR-WPU) with stretchability, toughness, and partial biodegradability by embedding biodegradable composite NFs of poly(glycerol sebacate): poly(vinyl alcohol) (PGS:PVA) into the WPU matrix, thus rendering its properties tunable. An optimal loading amount of NFs into the NFR-WPU significantly enhanced the toughness by 19 times while maintaining the Young's modulus as low as 3.3 MPa. Furthermore, the NFR-WPU substrate has very high fracture toughness and shows excellent biocompatibility. Moreover, the NFR-WPU has a disintegration rate nine times greater than that of pristine WPU. Finally, disintegrable and stretchable triboelectric and capacitive touch sensors on the NFR-WPU are fabricated and demonstrated for potential use in transient wearable electronics.  相似文献   

17.
A stretchable‐rubber‐based (SR‐based) triboelectric nanogenerator (TENG) is developed that can not only harvest energy but also serve as self‐powered multifunctional sensors. It consists of a layer of elastic rubber and a layer of aluminum film that acts as the electrode. By stretching and releasing the rubber, the changes of triboelectric charge distribution/density on the rubber surface relative to the aluminum surface induce alterations to the electrical potential of the aluminum electrode, leading to an alternating charge flow between the aluminum electrode and the ground. The unique working principle of the SR‐based TENG is verified by the coupling of numerical calculations and experimental measurements. A comprehensive study is carried out to investigate the factors that may influence the output performance of the SR‐based TENG. By integrating the devices into a sensor system, it is capable of detecting movements in different directions. Moreover, the SR‐based TENG can be attached to a human body to detect diaphragm breathing and joint motion. This work largely expands the applications of TENG not only as effective power sources but also as active sensors; and opens up a new prospect in future electronics.  相似文献   

18.
Tribotronics has attracted great attention as a new research field that encompasses the control and tuning of semiconductor transport by triboelectricity. Here, tribotronics is reviewed in terms of active mechanosensation and human–machine interfacing. As a fundamental unit, contact electrification field‐effect transistors are analyzed, in which the triboelectric potential can be used to control electrical transport in semiconductors. Several tribotronic functional devices have been developed for active control and information sensing, which has demonstrated triboelectricity‐controlled electronics and established active mechanosensation for the external environment. In addition, the universal triboelectric power management strategy and the triboelectric nanogenerator‐based constant sources are also reviewed, in which triboelectricity can be managed by electronics in the reverse action. With the implantation of triboelectric power management modules, the harvested triboelectricity by various kinds of human kinetic and environmental mechanical energy can be effectively managed as a power supply for self‐powered microsystems. In terms of the research prospects for interactions between triboelectricity and semiconductors, tribotronics is expected to demonstrate significant impact and potential applications in micro‐electro‐mechanical systems/nano‐electro‐mechanical systems (MEMS/NEMS), flexible electronics, robotics, wireless sensor network, and Internet of Things.  相似文献   

19.
Recently airflow sensors based on mechanical deformation mechanisms have drawn extensive attention due to their favorable flexibility and sensitivity. However, the fabrication of highly sensitive and self-adaptive airflow sensors in a simple, controllable, and scalable method still remains a challenge. Herein, inspired by the wing membrane of a bat, a highly sensitive and adaptive graphene/single-walled nanotubes-Ecoflex membrane (GSEM) based airflow sensor mediated by the reversible microspring effect is developed. The fabricated GSEM is endowed with an ultralow airflow velocity detection limit (0.0176 m s−1), a fast response time (≈1.04 s), and recovery time (≈1.28 s). The GSEM-based airflow sensor can be employed to realize noncontact manipulation. It is applied to a smart window system to realize the intelligent, open, and close behaviors via a threshold control. In addition, an array of airflow sensors is effectively designed to differentiate the magnitude and spatial distribution of the applied airflow stimulus. The GSEM-based airflow sensor is further integrated into a wireless vehicle model system, which can sensitively capture the flow velocity information to realize a real-time direction of motion manipulation. The microspring effect-based airflow sensing system shows significant potentials in the fields of wearable electronics and noncontact intelligent manipulation.  相似文献   

20.
Flexible sensing technologies that play a pivotal role in endowing robots with detection capabilities and monitoring their motions are impulsively desired for intelligent robotics systems. However, integrating and constructing reliable and sustainable flexible sensors with multifunctionality for robots remains an everlasting challenge. Herein, an entirely intrinsic self-healing, stretchable, and attachable multimodal sensor is developed that can be conformally integrated with soft robots to identify diverse signals. The dynamic bonds cross-linked networks including the insulating polymer and conductive hydrogel with good comprehensive performances are designed to fabricate the sensor with prolonged lifespan and improved reliability. Benefiting from the self-adhesiveness of the hydrogel, strong interfacial bonding can be formed on various surfaces, which promotes the conformable integration of the sensor with robots. Due to the ionic transportation mechanism, the sensor can detect strain and temperature based on piezoresistive and thermoresistive effect, respectively. Moreover, the sensor can work in triboelectric mode to achieve self-powered sensing. Various information can be identified from the electrical signals generated by the sensor, including hand gestures, soft robot crawling motions, a message of code, the temperature of objects, and the type of materials, holding great promise in the fields of environmental detection, wearable devices, human-machine interfacing, and robotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号