首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Titanium nitride (TiN), as an excellent alternative plasmonic supporting material compared to gold and silver, exhibits tunable plasmonic properties in the visible and near‐infrared spectra. However, label‐free surface plasmon resonance biosensing with TiN is seldom reported due to lack of proper surface functionalization protocols. Herein, this study reports biotinylated antibody‐functionalized TiN (BAF‐TiN) for high‐performance label‐free biosensing applications. The BAF‐TiN biosensor can quantitatively detect exosomes of 30–200 nm extracellular vesicles, isolated from a human glioma cell line. The limit of detection for an exosomal membrane protein with the BAF‐TiN biosensor is found to be 4.29 × 10?3µg mL?1 for CD63, an exosome marker, and 2.75 × 10?3µg mL?1 for epidermal growth factor receptor variant‐III, a glioma specific mutant protein, respectively. In conclusion, combining the biocompatibility, high stability, and excellent label‐free sensing performance of TiN, the BAF‐TiN biosensor could have great potential for the detection of cancer biomarkers, including exosomal surface proteins.  相似文献   

2.
纳米孔阵列的透射增强现象在许多领域都具有重要的应用和前景。采用时域有限差分(FDTD)方法对金属薄膜纳米孔阵列的透射增强特性进行了模拟研究。针对圆孔半径、薄膜厚度、阵列周期以及不同材料等因素进行了分析,讨论了不同参数条件下透射增强谱线的变化规律。研究表明大的圆孔半径和薄的薄膜厚度有利于提高透射性能,另外孔阵列周期较大时不利于增强透射。探讨了不同小孔形状对透射增强的影响,并采用矩形孔阵列进行了对比。最后通过改变薄膜材料计算了相应的透射性能。  相似文献   

3.
曲轶  高欣  张宝顺  薄报学  张兴德  石家纬 《中国激光》2000,27(12):1072-1074
分析了影响列阵半导体激光器输出功率的因素。利用分子束外延生长法生长出 Ga Al As/Ga As梯度折射率分别限制单量子阱材料 ( GRIN- SCH- SQW)。利用该材料制作出的列阵半导体激光器输出功率达到 10 W(室温 ,连续 ) ,峰值波长为 80 6~ 80 9nm  相似文献   

4.
富硅量不同的富硅氮化硅薄膜的光致发光研究   总被引:5,自引:1,他引:5  
采用等离子体增强化学气相沉积方法(PECVD),在低衬底温度下制备了系列富硅量不同的富硅氮化硅薄膜。且所有样品分别经过不同温度的退火。通过X射线光电子能谱(XPS)的测试证实了薄膜中硅团簇的存在。对不同富硅量的氮化硅薄膜做了红外和光致发光的比较研究。由不同富硅量薄膜中硅团簇的尺寸变化对发光峰的影响。得出了发光来源于包埋于氮化硅薄膜中由于量子限制效应而使带隙增大了的硅团簇。  相似文献   

5.
6.
Nonuniform local electric field and few nucleation sites on the reactive interface tend to cause detrimental lithium (Li) dendrites, which incur severe safety hazards and hamper the practical application of Li metal anodes in batteries. Herein, a carbon nanofiber (CNF) mat decorated with ultrafine titanium nitride (TiN) nanoparticles (CNF‐TiN) as both current collector and host material is reported for Li metal anodes. Uniform Li deposition is achieved by a synergetic effect of lithiophilic TiN and 3D CNF configuration with a highly conductive network. Theoretical calculations reveal that Li prefers to be adsorbed onto the TiN sheath with a low diffusion energy barrier, leading to controllable nucleation sites and dendrite‐free Li deposits. Moreover, the pseudocapacitive behavior of TiN identified through kinetics analysis is favorable for ultrafast Li+ storage and the charge transfer process, especially under a high plating/stripping rate. The CNF‐TiN‐modified Li anodes deliver lower nucleation overpotential for Li plating and superior electrochemical performance under a large current density (200 cycles at 3 mA cm?2) and high capacity (100 cycles with 6 mAh cm?2), as well as a long‐running lifespan (>600 h). The CNF‐TiN‐based full cells using lithium iron phosphate and sulfur cathodes exhibit excellent cycling stability.  相似文献   

7.
Large‐area, free‐standing and single‐crystalline GaN nanomembranes are prepared by electrochemical etching from epitaxial layers. As‐prepared nanomembranes are highly resistive but can become electronically active upon optical excitation, with an excellent electron mobility. The interaction of excited carriers with surface states is investigated by intensity‐dependent photoconductivity gain and temperature‐dependent photocurrent decay. Normally off enhancement‐type GaN nanomembrane MOS transistors are demonstrated, suggesting that GaN could be used in flexible electronics for high power and high frequency applications.  相似文献   

8.
This study develops and shows highly efficient exciton‐transferring hybrid semiconductor nanocrystal films of mixed dimensionality comprising quasi 0D and 2D colloids. Through a systematic study of time‐resolved and steady‐state photoluminescence spectroscopy as a function of the donor‐to‐acceptor molar concentration ratio and temperature, a high‐efficiency nonradiative energy transfer (NRET) process from CdZnS/ZnS core/shell quantum dots (QDs) directed to atomically flat CdSe nanoplatelets (NPLs) in their solid‐state thin films is uncovered. The exciton funneling in this system reaches transfer efficiency levels as high as 90% at room temperature. In addition, this study finds that with decreasing temperature exciton transfer efficiency is increased to a remarkable maximum level of ≈94%. The enhancement in the dipole–dipole coupling strength with decreasing temperature is well accounted by increasing photoluminescence quantum yield of the donor and growing spectral overlap between the donor and the acceptor. Furthermore, NRET efficiency exhibits a highly linear monotonic response with changing temperature. This makes the proposed QD–NPL composites appealing for noncontact sensitive temperature probing based on NRET efficiencies as a new metric. These findings indicate that combining colloidal nanocrystals of different dimensionality enables efficient means of temperature probing at an unprecedented sensitivity level at nanoscale through almost complete exciton transfer.  相似文献   

9.
Polymer dielectrics with intrinsic mechanical flexibility are considered as a key component for flexible organic field‐effect transistors (OFETs). However, it remains a challenge to fabricate highly aligned organic semiconductor single crystal (OSSC) arrays on the polymer dielectrics. Herein, for the first time, a facile and universal strategy, polar surface‐confined crystallization (PSCC), is proposed to grow highly aligned OSSC arrays on poly(4‐vinylphenol) (PVP) dielectric layer. The surface polarity of PVP is altered periodically with oxygen‐plasma treatment, enabling the preferential nucleation of organic crystals on the strong‐polarity regions. Moreover, a geometrical confinement effect of the patterned regions can also prevent multiple nucleation and misaligned molecular packing, enabling the highly aligned growth of OSSC arrays with uniform morphology and unitary crystallographic orientation. Using 2,7‐dioctyl[1]benzothieno[3,2‐b]benzothiophene (C8‐BTBT) as an example, highly aligned C8‐BTBT single crystal arrays with uniform molecular packing and crystal orientation are successfully fabricated on the PVP layer, which can guarantee their uniform electrical properties. OFETs made from the C8‐BTBT single crystal arrays on flexible substrates exhibit a mobility as high as 2.25 cm2 V?1 s?1, which has surpassed the C8‐BTBT polycrystalline film‐based flexible devices. This work paves the way toward the fabrication of highly aligned OSSCs on polymer dielectrics for high‐performance, flexible organic devices.  相似文献   

10.
11.
12.
在空间中,辐射粒子入射半导体器件,会在器件中淀积电荷.这些电荷被器件的敏感区域收集,造成存储器件(如静态随机存储器(SRAM))逻辑状态发生变化,产生单粒子翻转(SEU)效应.蒙特卡洛工具-Geant4能够针对上述物理过程进行计算机数值模拟,可以用于抗辐射器件的性能评估与优化.几何描述标示语言(GDML)能够在Geant4环境下对器件模型进行描述.通过使用GDML建立三维的器件结构模型,并使用Geant4进行不同能量质子入射三维器件模型的仿真.实验结果表明,在三维器件仿真中低能质子要比高能质子更容易引起器件的单粒子翻转效应.  相似文献   

13.
从自洽求解薛定谔方程和泊松方程出发,研究了GaN异质结构上偏压变化时异质结电场的变化。发现异质结量子阱能把外电场屏蔽在异质界面以外。利用这种异质结量子阱的屏蔽效应,可以使外电场都降落在异质结表面来控制表面势。为了把表面电势剪裁成半导体阴极所需的陡直下降的电势结构,进一步深入研究了双势垒异质结的电场结构,发现外面的异质结能屏蔽里面异质结的势垒。利用这种双势垒异质结的屏蔽效应设计出可由偏压直接控制电子亲合势的异质结构,从而为半导体阴极开辟出一条新的研究途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号