首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Organic electronics is growing to become an important new field in the global electronics market. RFID labels, flexible displays, solar cells, OLED-based lighting and displays are only some of the innovative products enabled by technologies based on organic semiconductors. Starting from a short overview of organic thin-film transistors research, this paper will concentrate on the recent developments in organic circuit design and on how the state of the art in this field can be further advanced with contributions from materials and processing research.  相似文献   

2.
Light‐emitting field‐effect transistors (LEFETs) combine switching and amplification with light emission and thus represent an interesting optoelectronic device. They are not limited anymore to a few examples and specific materials but are nearly universal for a wide range of semiconductors, from organic to inorganic and nanoscale. This review introduces the basic working principles of lateral unipolar and ambipolar LEFETs and discusses recent examples based on various solution‐processed semiconducting materials. Applications beyond simple light emission are presented and possible future directions for light‐emitting transistors with added functionalities are outlined.  相似文献   

3.
Solution‐processed or printed n‐channel field‐effect transistors (FETs) with high performance are not reported very often in the literature due to the scarcity of high‐mobility n‐type organic semiconductors. On the other hand, low‐temperature processed n‐channel metal oxide semiconductor (NMOS) transistors from electron conducting inorganic‐oxide nanoparticles show reduced‐performance and low mobility because of large channel roughness at the channel‐dielectric interface. Here, a method to produce ink‐jet printed high performance NMOS transistor devices using inorganic‐oxide nanoparticles as the transistor channel in combination with a 3D electrochemical gating (EG) via printed composite solid polymer electrolytes is presented. The printed FETs produced show a device mobility value in excess of 5 cm2 V?1 s?1, even though the root mean square (RMS) roughness of the nanoparticulate channel exceeds 15 nm. Extensive studies on the frequency dependent polarizability of composite polymer electrolyte capacitors show that the maximum attainable speed in such printed, long channel transistors is not limited by the ionic conductivity of the electrolytes. Therefore, the approach of combining printable, high‐quality oxide nanoparticles and the composite solid polymer electrolytes, offers the possibility to fully utilize the large mobility of oxide semiconductors to build all‐printed and high‐speed devices. The high polarizability of printable polymer electrolytes brings down the drive voltages to ≤1 V, making such FETs well‐suited for low‐power, battery compatible circuitry.  相似文献   

4.
The ability to process and dimensionally scale field‐effect transistors with and on paper and to integrate them as a core component for low‐power‐consumption analog and digital circuits is demonstrated. Low‐temperature‐processed p‐ and n‐channel integrated oxide thin‐film transistors in the complementary metal oxide semiconductor (CMOS) inverter architecture are seamlessly layered on mechanically flexible, low‐cost, recyclable paper substrates. The possibility of building these circuits using low‐temperature processes opens the door to new applications ranging from smart labels and sensors on clothing and packaging to electronic displays printed on paper pages for use in newspapers, magazines, books, signs, and advertising billboards. Because the CMOS circuits reported constitute fundamental building blocks for analog and digital electronics, this development creates the potential to have flexible form factor computers seamlessly layered onto paper. The holistic approach of merging low‐power circuitry with a recyclable substrate is an important step towards greener electronics.  相似文献   

5.
Organic semiconductors have sparked interest as flexible, solution processable, and chemically tunable electronic materials. Improvements in charge carrier mobility put organic semiconductors in a competitive position for incorporation in a variety of (opto‐)electronic applications. One example is the organic field‐effect transistor (OFET), which is the fundamental building block of many applications based on organic semiconductors. While the semiconductor performance improvements opened up the possibilities for applying organic materials as active components in fast switching electrical devices, the ability to make good electrical contact hinders further development of deployable electronics. Additionally, inefficient contacts represent serious bottlenecks in identifying new electronic materials by inhibiting access to their intrinsic properties or providing misleading information. Recent work focused on the relationships of contact resistance with device architecture, applied voltage, metal and dielectric interfaces, has led to a steady reduction in contact resistance in OFETs. While impressive progress was made, contact resistance is still above the limits necessary to drive devices at the speed required for many active electronic components. Here, the origins of contact resistance and recent improvement in organic transistors are presented, with emphasis on the electric field and geometric considerations of charge injection in OFETs.  相似文献   

6.
The astonishing recent progress in the field of metal oxide thin‐film transistors (TFTs) and their debut in commercial displays is accomplished using vacuum‐processed multicomponent oxide semiconductors. However, emulating this success with their solution‐processable counterparts poses numerous scientific challenges. Here, the development of high mobility n‐channel TFTs based on ultrathin (<10 nm) alternating layers of In2O3 and ZnO that are sequentially deposited to form heterojunction and superlattice channels is reported. The resulting TFTs exhibit high electron saturation mobility (13 cm2 V?1 s?1), excellent current on/off ratios (>108) with nearly zero onset voltages and hysteresis‐free operation despite the low temperature processing (≤200 °C). The enhanced performance is attributed to the formation of a quasi‐2D electron gas‐like system at the In2O3/ZnO heterointerface due to the conduction band offset. It is shown that altering the oxide deposition sequence has an adverse effect on electron transport due to formation of trap states. Optimized multilayer TFTs are shown to exhibit improved bias‐stress stability compared to single‐layer TFTs. Modulating the electron concentration within the superlattice channel via selective n‐doping of the ZnO interlayers leads to almost 100% saturation mobility increase (≈25 cm2 V?1 s?1) even when the TFTs are fabricated on flexible plastic substrates.  相似文献   

7.
Transparent electronics has attracted great research efforts in recent years due to its potential to make significant impact in many area, such as next generation displays, ultraviolet (UV) detectors, solar cells, charge-coupled devices (CCDs), and so on. Central to the realization of transparent electronics is the development of high performance fully transparent thin-film transistors (TFTs). One-dimensional (1-D) nanostructures have been the focus of current researches due to their unique physical properties and potential applications in nanoscale elec-tronics and optoelectronics. Among 1-D nanostructures, transparent metal oxide nanowires are one of the best candidates to make fully transparent TFTs. We provide in this paper the most recent development on the fabrication of fully transparent TFT using metal oxide nanowires as the device elements. First, the review article gives a general introduction about the development of transparent elec-tronics using different kinds of materials as the devices elements, including organic semiconductors, metal oxide thin films, and metal oxide nanowires. Second, the growth of metal oxide nanowires using vapor phase methods governed by two different growth mechanisms: vapor-solid mechanism and vapor-liquid-solid mechanism, respectively, are described. Third, the fabrication of transparent and flexible TFTs using different metal oxides nanowires is comprehensively described. In conclusion, the challenges and prospects for the future are discussed.  相似文献   

8.
Solution‐processed oxide semiconductors (OSs) used as channel layer have been presented as a solution to the demand for flexible, cheap, and transparent thin‐film transistors (TFTs). In order to produce high‐performance and long‐sustainable portable devices with the solution‐processed OS TFTs, the low‐operational voltage driving current is a key issue. Experimentally, increasing the gate‐insulator capacitances by high‐k dielectrics in the OS TFTs has significantly improved the field‐effect mobility of the OS TFTs. But, methodical examinations of how the field‐effect mobility depends on gate capacitance have not been presented yet. Here, a systematic analysis of the field‐effect mobility on the gate capacitances in the solution‐processed OS TFTs is presented, where the multiple‐trapping‐and‐release and hopping percolation mechanism are used to describe the electrical conductivity of the nanocrystalline and amorphous OSs, respectively. An intuitive single‐piece expression showing how the field‐effect mobility depends on gate capacitance is developed based on the aforementioned mechanisms. The field‐effect mobility, depending on the gate capacitances, of the fabricated ZnO and ZnSnO TFTs clearly follows the theoretical prediction. In addition, the way in which the gate insulator properties (e.g., gate capacitance or dielectric constant) affect the field‐effect mobility maximum in the nanocrystalline ZnO and amorphous ZnSnO TFTs are investigated.  相似文献   

9.
2D organic materials with in‐plane van der Waals forces among molecules have unique characteristics that ensure a brilliant future for multifunctional applications. Soluble organic semiconductors can be used to achieve low‐cost and high‐throughput manufacturing of electronic devices. However, achieving solution‐processed 2D single‐crystalline semiconductors with uniform morphology remains a substantial challenge. Here, the fabrication of 2D molecular single‐crystal semiconductors with precise layer definition by using a floating‐coffee‐ring‐driven assembly is presented. In particular, bilayer molecular films exhibit single‐crystalline features with atomic smoothness and high film uniformity over a large area; field‐effect transistors yield average and maximum carrier mobilities of 4.8 and 13.0 cm2 V?1 s?1, respectively. This work demonstrates the strong potential of 2D molecular crystals for low‐cost, large‐area, and high‐performance electronics.  相似文献   

10.
A typical human being carries billions of silicon‐based field‐effect transistors in his/her pockets. What makes these transistors work is Fermi level control, both by doping and field effect. Organic semiconductors are the core of a novel flexible electronics age, but the key effect of doping is still little understood. Here, precise handling is demonstrated for molar doping ratios as low as 10?5 in p‐ and n‐doped organic thin‐films by vacuum co‐sublimation, allowing comprehensive studying of the Fermi level control over the whole electronic gap of an organic semiconductor. In particular, dopant saturation and reserve regimes are observed for the first time in organic semiconductors. These results will allow for completely new design rules of organic transistors with improved long term stability and precise parameter control.  相似文献   

11.
The doping of semiconductors plays a critical role in improving the performance of modern electronic devices by precisely controlling the charge carrier density. However, the absence of a stable doping method for p‐type oxide semiconductors has severely restricted the development of metal oxide‐based transparent p–n junctions and complementary circuits. Here, an efficient and stable doping process for p‐type oxide semiconductors by using molecule charge transfer doping with tetrafluoro‐tetracyanoquinodimethane (F4TCNQ) is reported. The selections of a suitable dopant and geometry play a crucial role in the charge‐transfer doping effect. The insertion of a F4TCNQ thin dopant film (2–7 nm) between a Au source‐drain electrode and solution‐processed p‐type copper oxide (CuxO) film in bottom‐gate top‐contact thin‐film transistors (TFTs) provides a mobility enhancement of over 20‐fold with the desired threshold voltage adjustment. By combining doped p‐type CuxO and n‐type indium gallium zinc oxide TFTs, a solution‐processed transparent complementary metal‐oxide semiconductor inverter is demonstrated with a high gain voltage of 50. This novel p‐doping method is expected to accelerate the development of high‐performance and reliable p‐channel oxide transistors and has the potential for widespread applications.  相似文献   

12.
Contact resistance limits the performance of organic field‐effect transistors, especially those based on high‐mobility semiconductors. Despite intensive research, the nature of this phenomenon is not well understood and mitigation strategies are largely limited to complex schemes often involving co‐evaporated doped interlayers. Here, this study shows that solution self‐assembly of a polyelectrolyte monolayer on a metal electrode can induce carrier doping at the contact of an organic semiconductor overlayer, which can be augmented by dopant ion‐exchange in the monolayer, to provide ohmic contacts for both p‐ and n‐type organic field‐effect transistors. The resultant 2D‐doped profile at the semiconductor interface is furthermore self‐aligned to the contact and stabilized against counterion migration. This study shows that Coulomb potential disordering by the polyelectrolyte shifts the semiconductor density‐of‐states into the gap to promote extrinsic doping and cascade carrier injection. Contact resistivities of the order of 0.1–1 Ω cm2 or less have been attained. This will likely also provide a platform for ohmic injection into other advanced semiconductors, including 2D and other nanomaterials.  相似文献   

13.
Solution‐processable functionalized acenes have received special attention as promising organic semiconductors in recent years because of their superior intermolecular interactions and solution‐processability, and provide useful benchmarks for organic field‐effect transistors (OFETs). Charge‐carrier transport in organic semiconductor thin films is governed by their morphologies and molecular orientation, so self‐assembly of these functionalized acenes during solution processing is an important challenge. This article discusses the charge‐carrier transport characteristics of solution‐processed functionalized acene transistors and, in particular, focuses on the fine control of the films' morphologies and structural evolution during film‐deposition processes such as inkjet printing and post‐deposition annealing. We discuss strategies for controlling morphologies and crystalline microstructure of soluble acenes with a view to fabricating high‐performance OFETs.  相似文献   

14.
Organic thermoelectric materials, which can transform heat flow into electricity, have great potential for flexible, ultra‐low‐cost and large‐area thermoelectric applications. Despite rapid developments of organic thermoelectric materials, exploration and investigation of promising organic thermoelectric semiconductors still remain as a challenge. Here, the thermoelectric properties of several p‐ and n‐type organic semiconductors are investigated and studied, in particular, how the electric field modulations of the Seebeck coefficient in organic field‐effect transistors (OFETs) compare with the Seebeck coefficient in chemically doped films. The extracted relationship between the Seebeck coefficient (S) and electrical conductivity (σ) from the field‐effect transistor (FET) geometry is in good agreement with that of chemically doped films, enabling the investigation of the trade‐off relationship among σ, S, carrier concentration, and charging level. The results make OFETs an effective candidate for the thermoelectric studies of organic semiconductors.  相似文献   

15.
Bioelectronics in synaptic transistors for future biomedical applications, such as implanted treatments and human–machine interfaces, must be flexible with good mechanical compatibility with biological tissues. The rigid nature and high deposition temperature in conventional inorganic synaptic transistors restrict the development of flexible, conformal synaptic devices. Here, the dinaphtho[2,3‐b:2′,3′‐f]thieno[3,2‐b]‐thiophene organic synaptic transistor on elastic polydimethylsiloxane is demonstrated to avoid these limitations. The unique advantages of organic materials in low Young's modulus and low temperature process enable seamless adherence of organic synaptic transistors on arbitrary‐shaped objects. On 3D curved surfaces, the essential synaptic functions, such as potentiation/depression, short/long‐term synaptic plasticity, and spike voltage–dependent plasticity, are successfully realized. The time‐dependent surface potential characterization reveals the slow polarization of dipoles in the dielectric is responsible for hysteresis and synaptic behaviors. This work represents that organic materials offer a potential platform to realize the flexible, conformal synaptic transistors for the development of wearable and implantable artificial neuromorphic systems.  相似文献   

16.
As one type of vertical thin‐film transistors, permeable metal‐base transistors (PMBTs) with a permeable metal film embedded between two semiconductor layers have been proposed for high gain current amplifier. In principle, compared with conventional bipolar transistors, PMBTs should have a higher speed and are easier to fabricate compatible with flexible and printed electronics. However, functional PMBTs are not realized due to low current gains (<50) and lack of output current saturation. In this paper, making use of the nano‐textured surface of an organic semiconductor, we are able to fabricate devices with permeable metal base films having a pore size of about 20 nm and achieve current gains up to 476 with output current saturation. Correlations between the nano‐scale porosity and the charge transmission/amplification behaviors in the device are explained with characterization of the metal base porosity. From our device simulation results, the small pore size is essential to achieve current saturation in the device due to the potential‐pinning effect in the small pore regions. Finally, using a similar strategy, we also demonstrate a high gain (=260) solution‐processed metal oxide‐based PMBTs with output current saturation.  相似文献   

17.
Monolithic integration of microscale organic field‐effect transistors (micro‐OFETs) is the only and inevitable path toward low‐cost large‐area electronics and displays. However, to date, such an ultimate technology has not yet evolved due to challenges in positioning and patterning highly crystalline microscale molecular layers as well as in developing micrometer scale integration schemes. In this work, by mastering the local growth of molecular semiconductors on pre‐defined terraces, single‐crystal quasi‐2D molecular layers tens of square micrometers in size are created in dense periodic arrays on a Si substrate. Nondestructive photolithographic processes are developed to pattern micro‐OFETs with mobilities up to 34.6 cm2 V?1 s?1. This work demonstrates the feasibility to integrate arrays of short‐channel micro‐OFETs into electronic circuitry by highly parallel and size scalable fabrication technologies.  相似文献   

18.
A specific design for solution‐processed doping of active semiconducting materials would be a powerful strategy in order to improve device performance in flexible and/or printed electronics. Tetrabutylammonium fluoride and tetrabutylammonium hydroxide contain Lewis base anions, F? and OH?, respectively, which are considered as organic dopants for efficient and cost‐effective n‐doping processes both in n‐type organic and nanocarbon‐based semiconductors, such as poly[[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)] (P(NDI2OD‐T2)) and selectively dispersed semiconducting single‐walled carbon nanotubes by π‐conjugated polymers. The dramatic enhancement of electron transport properties in field‐effect transistors is confirmed by the effective electron transfer from the dopants to the semiconductors as well as controllable onset and threshold voltages, convertible charge‐transport polarity, and simultaneously showing excellent device stabilities under ambient air and bias stress conditions. This simple solution‐processed chemical doping approach could facilitate the understanding of both intrinsic and extrinsic charge transport characteristics in organic semiconductors and nanocarbon‐based materials, and is thus widely applicable for developing high‐performance organic and printed electronics and optoelectronics devices.  相似文献   

19.
《Spectrum, IEEE》2005,42(3):18-19
Two groups, in Japan and the United States, have reported making see-through circuits out of a new class of semiconductors. Besides holding out the possibility of building displays into the windows of cars and trains, the materials' low cost and low-temperature fabrication may suit them to future applications that don't need transparency, notably roll-up electronic displays. Standard silicon-based techniques can't compete in this area, because even if they could be made flexible, their processing temperatures, generally around 250 /spl deg/C, are so high they would melt any plastic substrate holding the silicon in place. To get around the problem, several academic and corporate laboratories are developing pentacene and other organic semiconductors - so called because they consist of carbon, hydrogen, and oxygen. But although organic transistors can be processed at low temperatures and even printed like ink, they don't let electrons and other charge carriers move around very quickly; therefore, they perform poorly. Besides, organic materials tend to be thermally and chemically unstable. The semiconductor is n-type, meaning that electrons carry charges through it. The speed at which the electrons move in the device - called the field-effect charge carrier mobility - is the key, because it limits how fast a transistor can switch. In a-IGZO devices, the mobility is 6-10 square centimeters per volt-second, about five times that in similar organic thin-film transistors and more than seven times that of the hydrogenerated amorphous silicon in flat-panel displays today.  相似文献   

20.
Physical phenomena such as energy quantization have to‐date been overlooked in solution‐processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum‐deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal‐oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin‐cast layers of zinc oxide (ZnO). As‐grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2–24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin‐cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self‐assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current–voltage characteristics of which resemble closely those of double‐barrier resonant‐tunneling diodes. As‐fabricated all‐oxide/hybrid devices exhibit a characteristic negative‐differential conductance region with peak‐to‐valley ratios in the range 2–7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号