首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of a versatile method for incorporating conductive materials into textiles could enable advances in wearable electronics and smart textiles. One area of critical importance is the detection of chemicals in the environment for security and industrial process monitoring. Here, the fabrication of a flexible, sensor material based on functionalized multi‐walled carbon nanotube (MWNT) films on a porous electrospun fiber mat for real‐time detection of a nerve agent simulant is reported. The material is constructed by layer‐by‐layer (LbL) assembly of MWNTs with opposite charges, creating multilayer films of MWNTs without binder. The vacuum‐assisted spray‐LbL process enables conformal coatings of nanostructured MWNT films on individual electrospun fibers throughout the bulk of the mat with controlled loading and electrical conductivity. A thiourea‐based receptor is covalently attached to the primary amine groups on the MWNT films to enhance the sensing response to dimethyl methylphosphonate (DMMP), a simulant for sarin nerve agent. Chemiresistive sensors based on the engineered textiles display reversible responses and detection limits for DMMP as low as 10 ppb in the aqueous phase and 5 ppm in the vapor phase. This fabrication technique provides a versatile and easily scalable strategy for incorporating conformal MWNT films into three‐dimensional substrates for numerous applications.  相似文献   

2.
This study reports on the fabrication of pressure/temperature/strain sensors and all‐solid‐state flexible supercapacitors using only polydimethylsiloxane coated microporous polypyrrole/graphene foam composite (PDMS/PPy/GF) as a common material. A dual‐mode sensor is designed with PDMS/PPy/GF, which measures pressure and temperature with the changes of current and voltage, respectively, without interference to each other. The fabricated dual‐mode sensor shows high sensitivity, fast response/recovery, and high durability during 10 000 cycles of pressure loading. The pressure is estimated using the thermoelectric voltage induced by simultaneous increase in temperature caused by a finger touch on the sensor. Additionally, a resistor‐type strain sensor fabricated using the same PDMS/PPy/GF could detect the strain up to 50%. Flexible, high performance supercapacitor used as a power supply is fabricated with electrodes of PPy/GF for its high surface area and pseudocapacitance. Furthermore, an integrated system of such fabricated multifunctional sensors and a supercapacitor on a skin‐attachable flexible substrate using liquid–metal interconnections operates well, whereas sensors are driven by the power of the supercapacitor. This study clearly demonstrates that the appropriate choice of a single functional material enables fabrication of active multifunctional sensors for pressure, temperature, and strain, as well as the supercapacitor, that could be used in wirelessly powered wearable devices.  相似文献   

3.
Recent years have witnessed the booming development of flexible strain sensors. To date, it is still a great challenge to fabricate strain sensors with both large workable strain range and high sensitivity. Cotton is an abundant supplied natural material composed of cellulose fibers and has been widely used for textiles and clothing. In this work, the fabrication of highly sensitive wearable strain sensors based on commercial plain weave cotton fabric, which is the most popular fabric for clothes, is demonstrated through a low‐cost and scalable process. The strain sensors based on carbonized cotton fabric exhibit fascinating performance, including large workable strain range (>140%), superior sensitivity (gauge factor of 25 in strain of 0%–80% and that of 64 in strain of 80%–140%), inconspicuous drift, and long‐term stability, simultaneously offering advantages of low cost and simplicity in device fabrication and versatility in applications. Notably, the strain sensor can detect a subtle strain of as low as 0.02%. Based on its superior performance, its applications in monitoring both vigorous and subtle human motions are demonstrated, showing its tremendous potential for applications in wearable electronics and intelligent robots.  相似文献   

4.
Flexible pressure sensors offer a wide application range in health monitoring and human–machine interaction. However, their implementation in functional textiles and wearable electronics is limited because existing devices are usually small, 0D elements, and pressure localization is only achieved through arrays of numerous sensors. Fiber‐based solutions are easier to integrate and electrically address, yet still suffer from limited performance and functionality. An asymmetric cross‐sectional design of compressible multimaterial fibers is demonstrated for the detection, quantification, and localization of kPa‐scale pressures over m2‐size surfaces. The scalable thermal drawing technique is employed to coprocess polymer composite electrodes within a soft thermoplastic elastomer support into long fibers with customizable architectures. Thanks to advanced mechanical analysis, the fiber microstructure can be tailored to respond in a predictable and reversible fashion to different pressure ranges and locations. The functionalization of large, flexible surfaces with the 1D sensors is demonstrated by measuring pressures on a gymnastic mat for the monitoring of body position, posture, and motion.  相似文献   

5.
Recent years have witnessed the explosive development of electronic skin. Highly sensitive pressure sensing is one of the primary abilities of electronic skin. To date, most of the reported skin‐like pressure sensors are based on nanomaterials and microstructured polydimethylsiloxane (PDMS) films, limiting their wide practical applications due to the unknown biotoxicity and the redundant fabrication procedure. A cost‐effective, large‐area‐capable, and biocompatible approach for fabrication of high‐performance skin‐like pressure sensors is highly desired. Silk fibroin (SF) is a natural protein that has recently drawn great attention due to its application as the substrate for flexible electronics. Here, the fabrication of skin‐like pressure sensors is demonstrated using SF‐derived active materials. Flexible and conformal pressure sensors can be fabricated using transparent carbonized silk nanofiber membranes (CSilkNM) and unstructured PDMS films through a cost‐effective and large‐scale capable approach. Due to the unique N‐doped carbon nanofiber network structure of CSilkNM, the obtained pressure sensor shows superior performance, including ultrahigh sensitivity (34.47 kPa?1) for a broad pressure range, an ultralow detection limit (0.8 Pa), rapid response time (<16.7 ms), and high durability (>10 000 cycles). Based on its superior performance, its applications in monitoring human physiological signals, sensing subtle touch, and detecting spatial distribution of pressure are demonstrated.  相似文献   

6.
Recently, macroporous graphene monoliths (MGMs), with ultralow density and good electrical conductivity, have been considered as excellent pressure sensors due to their excellent elasticity with a rapid rate of recovery. However, MGMs can only exhibit good sensitivity when the strain is higher than 20%, which is undesirable for touch‐type pressure sensors, such as artificial skin. Here, an innovative method for the fabrication of freestanding flexible graphene film with bubbles decorated on honeycomb‐like network is demonstrated. Due to the switching effect depended on “point‐to‐point” and “point‐to‐face” contact modes, the graphene pressure sensor has an ultrahigh sensitivity of 161.6 kPa?1 at a strain less than 4%, several hundred times higher than most previously reported pressure sensors. Moreover, the graphene pressure sensor can monitor human motions such as finger bending and pulse with a very low operating voltage of 10 mV, which is sufficiently low to allow for powering by energy‐harvesting devices, such as triboelectric generators. Therefore, the high sensitivity, low operating voltage, long cycling life, and large‐scale fabrication of the pressure sensors make it a promising candidate for manufacturing low‐cost artificial skin.  相似文献   

7.
Organic electrochemical transistors (OECTs) provide the opportunity to fabricate flexible biosensors with high sensitivity. However, there are currently very few methods to improve the selectivity of OECT sensors. In this work, nitrogen/oxygen‐codoped carbon cloths (NOCCs) are prepared by the carbonization of polyaniline‐wrapped carbon cloths at 750 °C under different atmospheres. The resulting NOCC electrodes exhibit different electrochemical sensing behaviors toward ascorbic acid (AA) and dopamine (DA), enabling the fabrication of OECT sensors with high sensitivity and selectivity that are comparable to the state‐of‐the‐art OECT sensors for AA and DA. The structural characterization and theoretical calculation reveal that the electrochemical sensing behaviors of the NOCC electrodes are closely related to their surface compositions, providing an unprecedented strategy for the design of flexible OECT sensors with high sensitivity and selectivity.  相似文献   

8.
Colorimetric sensors for monitoring and visual reporting of acidic environments both in water and air are highly valuable in various fields, such as safety and technical textiles. Until now sol‐gel‐based colorimetric sensors are usually nonflexible bulk glass or thin‐film sensors. Large‐area, flexible sensors usable in strong acidic environments are not available. Therefore, in this study organically modified silicon oxide nanofibrous membranes are produced by combining electrospinning and sol‐gel technology. Two pH‐indicator dyes are immobilized in the nanofibrous membranes: methyl yellow via doping, methyl red via both doping, and covalent bonding. This resulted in sensor materials with a fast response time and high sensitivity for pH‐change in water. The covalent bond between dye and the sol‐gel network showed to be essential to obtain a reusable pH‐sensor in aqueous environment. Also a high sensitivity is obtained for sensing of HCl and NH3 vapors, including a memory function allowing visual read‐out up to 20 min after exposure. These fast and reversible, large‐area flexible nanofibrous colorimetric sensors are highly interesting for use in multiple applications such as protective clothing and equipment. Moreover, the sensitivity to biogenic amines is demonstrated, offering potential for control and monitoring of food quality.  相似文献   

9.
Multifunctional flexible sensors that are sensitive to different physical and chemical stimuli but remain unaffected by any mechanical deformation and/or changes still present a challenge in the implementation of flexible devices in real‐world conditions. This challenge is greatly intensified by the need for an eco‐friendly fabrication technique suitable for mass production. A new eco‐friendly and scalable fabrication approach is reported for obtaining thin and transparent multifunctional sensors with regulated electrical conductivity and tunable band‐gap. A thin (≈190 nm thickness) freestanding sensing film with up to 4 inch diameter is demonstrated. Integration of the freestanding films with different substrates, such as polyethylene terephthalate substrates, silk textile, commercial polyethylene thin film, and human skin, is also described. These multifunctional sensors can detect and distinguish between different stimuli, including pressure, temperature, and volatile organic compounds. All the sensing properties explored are stable under different bending/strain states.  相似文献   

10.
Flexible pulse sensors that can detect subtle skin surface deformation caused by arterial pulses are key components for developing non‐invasive continuous pulse waveform monitoring systems that provide vital health status parameters. Piezoelectric pulse sensors (PPSs) offer a promising solution for flexible pulse sensors due to their relatively high sensitivity and stability, and low power consumption, when compared with conventional active pulse sensors. However, the reported high‐performance PPSs contain toxic lead, which limits their practical applications. In this study, a highly sensitive and flexible PPS that detects surface deflections on the micrometer scale is fabricated with single‐crystalline group III‐nitride thin film. This biocompatible flexible PPS is sensitive enough to detect pulse waveform with detailed characteristic peaks from most arterial pulse sites when attached to the skin surface without applying external pressure. Useful physiological parameters such as the pulse rate, artery augmentation index, and pulse wave velocity can be drawn from the as‐acquired pulse waveforms. The flexible PPS can also be used to continuously monitor the arterial pulse waveform.  相似文献   

11.
A rational approach is proposed to design soft multifunctional sensors capable of detection and discrimination of different physical stimuli. Herein, a flexible multifunctional sensor concurrently detecting and distinguishing minute temperature and pressure stimuli in real time is developed using electrospun carbon nanofiber (CNF) films as the sole sensing material and electrical resistance as the only output signal. The stimuli sensitivity and discriminability are coordinated by tailoring the atomic- and device-level structures of CNF films to deliver outstanding pressure and temperature sensitivities of ? 0.96 kPa?1 and ? 2.44%  ° C?1, respectively, enabling mutually exclusive sensing performance without signal cross-interference. The CNF multifunctional sensor is considered the first of its kind to accomplish the stimulus discriminability using only the electrical resistance as the output signal, which is most convenient to monitor and process for device applications. As such, it has distinct advantages over other reported sensors in its simple, cost-effective fabrication and readout system. It also possesses other invaluable traits, including good bending stability, fast response time, and long-term durability. Importantly, the ability to simultaneously detect and decouple temperature and pressure stimuli is demonstrated through novel applications as a skin-mountable device and a flexible game controller.  相似文献   

12.
Transparent electrodes have been widely used for various electronics and optoelectronics, including flexible ones. Many nanomaterial‐based electrodes, in particular 1D and 2D nanomaterials, have been proposed as next‐generation transparent and flexible electrodes. However, their transparency, conductivity, large‐area uniformity, and sometimes cost are not yet sufficient to replace indium tin oxide (ITO). Furthermore, the conventional ITO is quite rigid and susceptible to mechanical fractures under deformations (e.g., bending, folding). In this study, the authors report new advances in the design, fabrication, and integration of wearable and transparent force touch (touch and pressure) sensors by exploiting the previous efforts in stretchable electronics as well as novel ideas in the transparent and flexible electrode. The optical and mechanical experiment, along with simulation results, exhibit the excellent transparency, conductivity, uniformity, and flexibility of the proposed epoxy‐copper‐ITO (ECI) multilayer electrode. By using this multi‐layered ECI electrode, the authors present a wearable and transparent force touch sensor array, which is multiplexed by Si nanomembrane p‐i‐n junction‐type (PIN) diodes and integrated on the skin‐mounted quantum dot light‐emitting diodes. This novel integrated system is successfully applied as a wearable human–machine interface (HMI) to control a drone wirelessly. These advances in novel material structures and system‐level integration strategies create new opportunities in wearable smart displays.  相似文献   

13.
A general method is described to prepare high‐performance conductive polymer fibers or tapes. In this method, bicomponent tapes/fibers containing two layers of conductive polymer composites (CPCs) filled with multiwall carbon nanotubes (MWNT) or carbon black (CB) based on a lower‐melting‐temperature polymer and an unfilled polymer core with higher melting temperature are fabricated by a melt‐based process. Morphological control of the conductive network formed by nanofillers is realized by solid‐state drawing and annealing. Information on the morphological and electrical change of the highly oriented conductive nanofiller network in CPC bicomponent tapes during relaxation, melting, and crystallization of the polymer matrix is reported for the first time. The conductivity of these polypropylene tapes can be as high as 275 S m?1 with tensile strengths of around 500 MPa. To the best of the authors' knowledge, it is the most conductive, high‐strength polymer fiber produced by melt‐processing reported in literature, despite the fact that only ~5 wt.% of MWNTs are used in the outer layers of the tape and the overall MWNT content in the bicomponent tape can be much lower (typically ~0.5 wt.%). Their applications could include sensing, smart textiles, electrodes for flexible solar cells, and electromagnetic interference (EMI) shielding. Furthermore, a modeling approach was used to study the relaxation process of highly oriented conductive networks formed by carbon nanofillers.  相似文献   

14.
Bioelectronic interfaces require electrodes that are mechanically flexible and chemically inert. Flexibility allows pristine electrode contact to skin and tissue, and chemical inertness prevents electrodes from reacting with biological fluids and living tissues. Therefore, flexible gold electrodes are ideal for bioimpedance and biopotential measurements such as bioimpedance tomography, electrocardiography (ECG), electroencephalography (EEG), and electromyography (EMG). However, a manufacturing process to fabricate gold electrode arrays on plastic substrates is still elusive. In this work, a fabrication and low‐temperature sintering (≈200 °C) technique is demonstrated to fabricate gold electrodes. At low‐temperature sintering conditions, lines of different widths demonstrate different sintering speeds. Therefore, the sintering condition is targeted toward the widest feature in the design layout. Manufactured electrodes show minimum feature size of 62 μm and conductivity values of 5 × 10 6 S m?1. Utilizing the versatility of printing and plastic electronic processes, electrode arrays consisting of 31 electrodes with electrode‐to‐electrode spacing ranging from 2 to 7 mm are fabricated and used for impedance mapping of conformal surfaces at 15 kHz. Overall, the fabrication process of an inkjet‐printed gold electrode array that is electrically reproducible, mechanically robust, and promising for bioimpedance and biopotential measurements is demonstrated.  相似文献   

15.
Resistive tactile sensors based on changes in contact area have been extensively explored for a variety of applications due to their outstanding pressure sensitivity compared to conventional tactile sensors. However, the development of tactile sensors with high sensitivity in a wide pressure range still remains a major challenge due to the trade‐off between sensitivity and linear detection range. Here, a tactile sensor comprising stacked carbon nanotubes and Ni‐fabrics is presented. The hierarchical structure of the fabrics facilitates a significant increase in contact area between them under pressure. Additionally, a multi‐layered structure that can provide more contact area and distribute stress to each layer further improves the sensitivity and linearity. Given these advantages, the sensor presents high sensitivity (26.13 kPa?1) over a wide pressure range (0.2–982 kPa), which is a significant enhancement compared with the results obtained in previous studies. The sensor also exhibits outstanding performances in terms of response time, repeatability, reproducibility, and flexibility. Furthermore, meaningful applications of the sensor, including wrist‐pulse‐signal analysis, flexible keyboards, and tactile interface, are successfully demonstrated. Based on the facile and scalable fabrication technique, the conceptually simple but powerful approach provides a promising strategy to realize next‐generation electronics.  相似文献   

16.
BaTiO3 crystals are attractive materials due to their high dielectric properties, but they are brittle and inelastic ceramics, which limits their broader applications in emerging fields, such as flexible electronics. A scalable strategy for the fabrication of ultra‐flexible crystalline BaTiO3 nanofiber (NF) films by a sol–gel electrospinning method, followed by a brief calcination, is reported. It facilitates the formation of perovskite BaTiO3 crystals with intricate grain boundaries at a low temperatures by growing them within polymer NF templates. The ceramic films have a polymer‐like softness of 50 mN, a large Young's modulus of 61 MPa, and an elastic strain of 0.9%. Moreover, they have a low density of 28 mg cm?3 and demonstrate superior softness without fracture after deformation. Piezoelectric sensors fabricated based on these films exhibit a high sensitivity of 80 ms with an output voltage of 1.05 V at a pressure of 100 kPa. This approach allows for the large‐scale fabrication of flexible BaTiO3 crystal NF films.  相似文献   

17.
Wearable, flexible, and even stretchable tactile sensors, such as various types of electronic skin, have attracted extensive attention, which can adapt to complex and irregular surfaces, maximize the matching of wearable devices, and conformally apply onto human organs. However, it is a great challenge to simultaneously achieve breathability, permeability, and comfortability for their development. Herein, mitigating the problem by miniaturizing and integrating the sensors is tried. Highly flexible and stretchable coaxial structure fiber-shaped triboelectric nanogenerators (F-TENGs) with a diameter of 0.63 mm are created by orderly depositing conductive material of silver nanowires/carbon nanotubes and encapsulated polydimethylsiloxane onto the stretchable spandex fiber. As a self-powered multifunctional sensor, the resulting composite fiber can convert mechanical stimuli into electrical signals without affecting the normal human body. Moreover, the F-TENGs can be easily integrated into traditional textiles to form tactile sensor arrays. Through the tactile sensor arrays, the real-time tactile trajectory and pressure distribution can be precisely mapped. This work may provide a new method to fabricate fiber-based pressure sensors with high sensitivity and stretchability, which have great application prospects in personal healthcare monitoring and human–machine interactions.  相似文献   

18.
It is a challenge to manufacture pressure‐sensing materials that possess flexibility, high sensitivity, large‐area compliance, and capability to detect both tiny and large motions for the development of artificial intelligence products. Herein, a very simple and low‐cost approach is proposed to fabricate versatile pressure sensors based on microcrack‐designed carbon black (CB)@polyurethane (PU) sponges via natural polymer‐mediated water‐based layer‐by‐layer assembly. These sensors are capable of satisfying the requirements of ultrasmall as well as large motion monitoring. The versatility of these sensors benefits from two aspects: microcrack junction sensing mechanism for tiny motion detecting (91 Pa pressure, 0.2% strain) inspired by the spider sensory system and compressive contact of CB@PU conductive backbones for large motion monitoring (16.4 kPa pressure, 60% strain). Furthermore, these sensors exhibit excellent flexibility, fast response times (<20 ms), as well as good reproducibility over 50 000 cycles. This study also demonstrates the versatility of these sensors for various applications, ranging from speech recognition, health monitoring, bodily motion detection to artificial electronic skin. The desirable comprehensive performance of our sensors, which is comparable to the recently reported pressure‐sensing devices, together with their significant advantages of low‐cost, easy fabrication, especially versatility, makes them attractive in the future of artificial intelligence.  相似文献   

19.
Organic thin‐film transistors (OTFTs) can provide an effective platform to develop flexible pressure sensors in wearable electronics due to their good signal amplification function. However, it is particularly difficult to realize OTFT‐based pressure sensors with both low‐voltage operation and high sensitivity. Here, controllable polyelectrolyte composites based on poly(ethylene glycol) (PEG) and polyacrylic acid (PAA) are developed as a type of high‐capacitance dielectrics for flexible OTFTs and ultrasensitive pressure sensors with sub‐1 V operation. Flexible OTFTs using the PAA:PEG dielectrics show good universality and greatly enhanced electrical performance under a much smaller operating voltage of ?0.7 V than those with a pristine PAA dielectric. The low‐voltage OTFTs also exhibit excellent flexibility and bending stability under various bending radii and long cycles. Flexible OTFT‐based pressure sensors with low‐voltage operation and superhigh sensitivity are demonstrated by using a suspended semiconductor/dielectric/gate structure in combination with the PAA:PEG dielectric. The sensors deliver a record high sensitivity of 452.7 kPa?1 under a low‐voltage of ?0.7 V, and excellent operating stability over 5000 cycles. The OTFT sensors can be built into a wearable sensor array for spatial pressure mapping, which shows a bright potential in flexible electronics such as wearable devices and smart skins.  相似文献   

20.
Sensing strain of soft materials in small scale has attracted increasing attention. In this work, graphene woven fabrics (GWFs) are explored for highly sensitive sensing. A flexible and wearable strain sensor is assembled by adhering the GWFs on polymer and medical tape composite film. The sensor exhibits the following features: ultra‐light, relatively good sensitivity, high reversibility, superior physical robustness, easy fabrication, ease to follow human skin deformation, and so on. Some weak human motions are chosen to test the notable resistance change, including hand clenching, phonation, expression change, blink, breath, and pulse. Because of the distinctive features of high sensitivity and reversible extensibility, the GWFs based piezoresistive sensors have wide potential applications in fields of the displays, robotics, fatigue detection, body monitoring, and so forth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号