首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the study of hybrid quantum dot light‐emitting diodes (QLEDs), even for state‐of‐the‐art achievement, there still exists a long‐standing charge balance problem, i.e., sufficient electron injection versus inefficient hole injection due to the large valence band offset of quantum dots (QDs) with respect to the adjacent carrier transport layer. Here the dedicated design and synthesis of high luminescence Zn1?x CdxSe/ZnSe/ZnS QDs is reported by precisely controlled shell growth, which have matched energy level with the adjacent hole transport layer in QLEDs. As emitters, such Zn1?xCdxSe‐ based QLEDs exhibit peak external quantum efficiencies (EQE) of up to 30.9%, maximum brightness of over 334 000 cd m?2, very low efficiency roll‐off at high current density (EQE ≈25% @ current density of 150 mA cm?2), and operational lifetime extended to ≈1 800 000 h at 100 cd m?2. These extraordinary performances make this work the best among all solution‐processed QLEDs reported in literature so far by achieving simultaneously high luminescence and balanced charge injection. These major advances are attributed to the combination of an intermediate ZnSe layer with an ultrathin ZnS outer layer as the shell materials and surface modification with 2‐ethylhexane‐1‐thiol, which can dramatically improve hole injection efficiency and thus lead to more balanced charge injection.  相似文献   

2.
Substantial achievements have been made in green and red perovskite light emitting diodes (PeLEDs) recently. However, blue PeLEDs still lag behind with much lower performances. One of the main reasons is the mass undesirable nonradiative recombination at interfaces and within the perovskite films. In this work, an efficient hole transport bi‐layer structure composed of PSSNa and NiOx is demonstrated to simultaneously inhibit the nonradiative decays between NiOx and perovskite films by reducing NiOx surface defects and improving quasi‐2D perovskite thin film quality by minimizing its pin‐holes and reducing the film roughness. The results show that the dipole feature of PSSNa improves the hole transportation and thus PeLED performances. Moreover, by introducing KBr into the perovskite, its film quality improves and trap states reduce. Eventually, the blue PeLEDs is achieved with a very low turn‐on voltage of 3.31 V accompanied with an external quantum efficiency of 1.45% and a remarkable luminance of 4359 cd m‐2. With further optimization of the perovskite precursor concentration, the highest luminance reaches 5737 cd m‐2, which represents the brightest blue PeLEDs reported to date as far as it is known. Furthermore, the devices also show better spectral stability and operation lifetime as compared to other blue PeLEDs.  相似文献   

3.
Stabilization is one critical issue that needs to be improved for future application of colloidal quantum dot (QD)‐based light‐emitting diodes (QLEDs). This study reports highly efficient and stable QLEDs based on solution‐processsed, metal‐doped nickel oxide films as hole injection layer (HIL). Several kinds of metal dopants (Li, Mg, and Cu) are introduced to improve the hole injection capability of NiO films. The resulting device with Cu:NiO HIL exhibits superior performance compared to the state‐of‐the‐art poly(3,4‐ethylenedioxythiophene):poly(styrene‐sulfonate) (PEDOT:PSS)‐based QLEDs, with a maximum current efficiency and external quantum efficiency of 45.7 cd A?1 and 10.5%, respectively. These are the highest values reported so far for QLEDs with PEDOT:PSS‐free normal structure. Meanwhile, the resulting QLED shows a half‐life time of 87 h at an initial luminance of 5000 cd m?2, almost fourfold longer than that of the PEDOT:PSS‐based device.  相似文献   

4.
Solution‐processed metal‐oxide thin films based on high dielectric constant (k) materials have been extensively studied for use in low‐cost and high‐performance thin‐film transistors (TFTs). Here, scandium oxide (ScOx) is fabricated as a TFT dielectric with excellent electrical properties using a novel water‐inducement method. The thin films are annealed at various temperatures and characterized by using X‐ray diffraction, atomic‐force microscopy, X‐ray photoelectron spectroscopy, optical spectroscopy, and a series of electrical measurements. The optimized ScOx thin film exhibits a low‐leakage current density of 0.2 nA cm?2 at 2 MV cm?1, a large areal capacitance of 460 nF cm?2 at 20 Hz and a permittivity of 12.1. To verify the possible applications of ScOx thin films as the gate dielectric in complementary metal oxide semiconductor (CMOS) electronics, they were integrated in both n‐type InZnO (IZO) and p‐type CuO TFTs for testing. The water‐induced full oxide IZO/ScOx TFTs exhibit an excellent performance, including a high electron mobility of 27.7 cm2 V?1 s?1, a large current ratio (Ion/Ioff) of 2.7 × 107 and high stability. Moreover, as far as we know it is the first time that solution‐processed p‐type oxide TFTs based on a high‐k dielectric are achieved. The as‐fabricated p‐type CuO/ScOx TFTs exhibit a large Ion/Ioff of around 105 and a hole mobility of 0.8 cm2 V?1 at an operating voltage of 3 V. To the best of our knowledge, these electrical parameters are among the highest performances for solution‐processed p‐type TFTs, which represents a great step towards the achievement of low‐cost, all‐oxide, and low‐power consumption CMOS logics.  相似文献   

5.
2D transition metal dichalcogenide (TMD) nanosheets, including MoS2, WS2, and TaS2, are used as hole injection layers (HILs) in organic light‐emitting diodes (OLEDs). MoS2, WS2, and TaS2 nanosheets are prepared using an exfoliation by ultrasonication method. The thicknesses and sizes of the TMD nanosheets are measured to be 3.1–4.3 nm and more than 100 nm, respectively. The work functions of the TMD nanosheets increase from 4.4–4.9 to 4.9–5.1 eV following ultraviolet/ozone (UVO) treatment. The turn‐on voltages at 10 cd m?2 for UVO‐treated TMD‐based devices decrease from 7.3–12.8 to 4.3–4.4 V and maximum luminance efficiencies increase from 5.74–9.04 to 12.01–12.66 cd A?1. In addition, this study confirms that the stabilities of the devices in air can be prolonged by using UVO‐treated TMDs as HILs in OLEDs. These results demonstrate the great potential of liquid‐exfoliated TMD nanosheets for use as HILs in OLEDs.  相似文献   

6.
Light‐emitting diodes (LEDs) based on lead halide perovskites demonstrate outstanding optoelectronic properties and are strong competitors for display and lighting applications. While previous halide perovskite LEDs are mainly produced via solution processing, here an all‐vacuum processing method is employed to construct CsPbBr3 LEDs because vacuum processing exhibits high reliability and easy integration with existing OLED facilities for mass production. The high‐throughput combinatorial strategies are further adopted to study perovskite composition, annealing temperature, and functional layer thickness, thus significantly speeding up the optimization process. The best rigid device shows a current efficiency (CE) of 4.8 cd A?1 (EQE of 1.45%) at 2358 cd m?2, and best flexible device shows a CE of 4.16 cd A?1 (EQE of 1.37%) at 2012 cd m?2 with good bending tolerance. Moreover, by choosing NiOx as the hole‐injection layer, the CE is improved to 10.15 cd A?1 and EQE is improved to a record of 3.26% for perovskite LEDs produced by vacuum deposition. The time efficient combinatorial approaches can also be applied to optimize other perovskite LEDs.  相似文献   

7.
Organic‐inorganic hybrid perovskite (CH3NH3PbX3, X = Cl, Br or I) quantum dots (QDs) have shown superior optoelectronic properties and have been regarded as a most ideal material for next‐generation optoelectronic devices, particularly for QDs‐based light‐emitting diodes (QLEDs). However, there are only a few reports on CH3NH3PbX3 QLEDs and the reported performance is still very poor, primarily due to the difficulties in the fabrication of high‐quality compact QDs thin films. In this work, an electric‐field‐assisted strategy is developed for efficient fabrication of uniform CH3NH3PbBr3 QDs thin films with high photoluminescence quantum yields (PLQY, 80%–90%) from dilute CH3NH3PbBr3 QDs suspensions (≈0.1 mg mL‐1) within 5 mins. Benefited from the high‐quality CH3NH3PbBr3 QDs thin films, the corresponding QLEDs deliver a highly bright green emission with maximum luminances of 12450 cd m2. Furthermore, a current efficiency of 12.7 cd A‐1, a power efficiency of 9.7 lm W‐1, and an external quantum efficiency (EQE) of 3.2% were acheived by enhancing the hole injection. This performance represents the best results for CH3NH3PbBr3 QDs‐based QLEDs reported to date. These results indicate an important progress in the fabrication of high‐performance CH3NH3PbX3 QLEDs and demonstrate their huge potential for next‐generation displays and lighting.  相似文献   

8.
Stability issue is one of the major concerns that limit emergent perovskite light‐emitting diodes (PeLEDs) techniques. Generally, ion migration is considered as the most important origin of PeLEDs degradation. In this work, an all‐inorganic device architecture, LiF/perovskite/LiF/ZnS/ZnSe, is proposed to address this imperative problem. The inorganic (Cs1?xRbx)1?yKyPbBr3 perovskite is optimized with achieving a photoluminescence quantum yield of 67%. Depth profile analysis of X‐ray photoelectron spectroscopy indicates that the LiF/perovskite/LiF structure and the ZnS/ZnSe cascade electron transport layers significantly suppress the electric‐field‐induced ion migrations of the perovskite layers, and impede the diffusion of metallic atoms from cathode into perovskites. The as‐prepared PeLEDs display excellent shelf stability (maintaining 90% of the initial external quantum efficiency [EQE] after 264 h) and operational stability (half‐lifetime of about 255 h at an initial luminance of 120 cd m?2). The devices also exhibit a maximum brightness of 15 6155 cd m?2 and an EQE of 11.05%.  相似文献   

9.
Quantum dot light‐emitting diodes (QLEDs) with tandem structure are promising candidates for future displays because of their advantages of pure emission color, long lifetime, high brightness, and high efficiency. To obtain efficient QLEDs, a solution‐processable interconnecting layer (ICL) based on poly(3, 4‐ethylenedioxythiophene)/polystyrene sulfonate/ZnMgO is developed. With the proposed ICL, all‐solution‐processed, inverted, tandem QLEDs are demonstrated with high current efficiency (CE) of 57.06 cd A?1 and external quantum efficiency (EQE) of 13.65%. By further optimizing the fabrication processes and using a hybrid deposition technique, the resultant tandem QLEDs exhibit a very high CE over 100 cd A?1 and an impressive EQE over 23%, which are the highest values ever reported and are comparable with those of the state‐of‐the‐art phosphorescent organic LEDs. Moreover, the efficiency roll‐off, a notorious phenomenon in phosphorescent LEDs, is significantly reduced in the developed QLEDs. For example, even at a very high brightness over 200 000 cd m?2, the tandem QLEDs can still maintain a high CE of 96.47 cd A?1 and an EQE of 22.62%. The proposed ICL and the developed fabrication methods allow for realization of very efficient tandem QLEDs for next generation display and lighting applications.  相似文献   

10.
Thermal conductivity of free‐standing reduced graphene oxide films subjected to a high‐temperature treatment of up to 1000 °C is investigated. It is found that the high‐temperature annealing dramatically increases the in‐plane thermal conductivity, K, of the films from ≈3 to ≈61 W m?1 K?1 at room temperature. The cross‐plane thermal conductivity, K, reveals an interesting opposite trend of decreasing to a very small value of ≈0.09 W m?1 K?1 in the reduced graphene oxide films annealed at 1000 °C. The obtained films demonstrate an exceptionally strong anisotropy of the thermal conductivity, K/K ≈ 675, which is substantially larger even than in the high‐quality graphite. The electrical resistivity of the annealed films reduces to 1–19 Ω □?1. The observed modifications of the in‐plane and cross‐plane thermal conductivity components resulting in an unusual K/K anisotropy are explained theoretically. The theoretical analysis suggests that K can reach as high as ≈500 W m?1 K?1 with the increase in the sp2 domain size and further reduction of the oxygen content. The strongly anisotropic heat conduction properties of these films can be useful for applications in thermal management.  相似文献   

11.
A novel simple laser digital patterning process to fabricate Ni‐based flexible transparent conducting panels using solution‐processed nonstoichiometric nickel oxide (NiOx) thin films and their applications for flexible transparent devices are reported in this study. A large‐scale synthesis route to produce NiOx nanoparticle (NP) ink is also demonstrated. A low‐power continuous‐wave laser irradiation photothermochemically reduces and sinters selected areas of a NiOx NP thin film to produce Ni electrode patterns. Owing to the innovative NiOx NP ink and substantially lowered applied laser power density, Ni conductors can be fabricated, for the first time to the best of the authors' knowledge, even on a polyethylene terephthalate substrate, which is known to have one of the lowest glass‐transition temperatures among polymers. The resultant Ni electrodes exhibit a high‐temperature oxidation resistance up to approximately 400 °C, and high corrosion resistance in tap water and even in seawater. Moreover, a superior mechanical stability of the Ni conductors is confirmed by tape‐pull, ultrasonic‐bath, bending/twisting, and cyclic bending (up to 10 000 cycles) tests. Finally, flexible transparent touch screen panels and electrical heaters are fabricated with mesh‐type Ni conductors to demonstrate possible applications.  相似文献   

12.
Actualizing highly efficient solution‐processed thermally activated delayed fluorescent (TADF) organic light‐emitting diodes (OLEDs) at high brightness becomes significant to the popularization of purely organic electroluminescence. Herein, a highly soluble emitter benzene‐1,3,5‐triyltris((4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)methanone was developed, yielding high delayed fluorescence rate (kTADF > 105 s?1) ascribed to the multitransition channels and tiny singlet–triplet splitting energy (ΔEST ≈ 32.7 meV). The triplet locally excited state is 0.38 eV above the lowest triplet charge‐transfer state, assuring a solely thermal equilibrium route for reverse intersystem crossing. Condensed state solvation effect unveils a hidden “trade‐off”: the reverse upconversion and triplet concentration quenching processes can be promoted but with a reduced radiative rate from the increased dopant concentration and the more polarized surroundings. Striking a delicate balance, corresponding vacuum‐evaporated and solution‐processed TADF‐OLEDs realized maximum external quantum efficiencies (EQEs) of ≈26% and ≈22% with extremely suppressed efficiency roll‐off. Notably, the wet‐processed one achieves to date the highest EQEs of 20.7%, 18.5%, 17.1%, and 13.6%, among its counterparts at the luminance of 1000, 3000, 5000, and 10 000 cd m?2, respectively.  相似文献   

13.
Solution‐processed organic light‐emitting diodes (OLEDs) with thermally activated delayed fluorescent (TADF) material as emitter have attracted much attention because of their low cost and high performance. However, exciton quench at the interface between the hole injection layer, poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), and emitting layer (EML) in devices can lead to low device performance. Here, a novel high triplet energy (2.89 eV) and crosslinkable hole‐transporting material grafted with oxetane groups, N,N‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy)hexyloxy)phenyl)‐3,5‐di(9H‐carbazol‐9‐yl)benzenamine (Oxe‐DCDPA)), as crosslinked hole transport layer (HTL) into the interface of PEDOT:PSS layer and EML is proposed for prevention of exciton quenching, and among the reported devices with single HTL in solution‐processed TADF‐OLED, the highest external quantum efficiency (EQE)/luminous efficiency (ηL) of 26.1%/94.8 cd A?1 and 24.0%/74.0 cd A?1 are achieved for green emission (DACT‐II as emitter) and bluish‐green emission (DMAC‐TRZ as emitter), respectively. Further improvement, using double HTLs, composed of N,N′‐bis(4‐(6‐((3‐ethyloxetan‐3‐yl)methoxy))‐hexylphenyl)‐N,N′‐diphenyl‐4,4′‐diamine with high hole mobility and Oxe‐DCDPA with high triplet energy, leads to the highest EQE/ηL of 30.8%/111.9 cd A?1 and 27.2%/83.8 cd A?1 for green emission and bluish‐green emission, respectively. These two devices show the high maximum brightness of 81 100 and 70 000 cd m?2, respectively.  相似文献   

14.
Recently it has been reported that Nafion oligomers, i.e., 2‐(2‐sulfonatotetrafluoroethoxy)‐2‐trifluoromethyltrifluoroethoxyfunctionalized oligotetrafluoroethylenes, also called perfluorinated ionomers (PFIs), can be blended into poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDT:PSSH) films to increase their workfunctions beyond 5.2 eV. These PFI‐modified films are useful for energy‐level alignment studies, and have been proposed as hole‐injection layers (HILs). It is shown here however that these HILs do not provide sufficiently fast hole transfer into adjacent polymer semiconductor layers with ionization potentials deeper than ≈5.2 eV. X‐ray and ultraviolet photoemission spectroscopies reveal that these HILs exhibit a molecularly‐thin PFI overlayer that sets up a surface dipole that provides the ultrahigh workfunction. This dipolar layer persists even when the subsequent organic semiconductor layer is deposited, as evidenced by measurements of the diode built‐in potentials. As a consequence, the PFI‐modified HILs produce a higher contact resistance, and a lower equilibrium density of holes at the semiconductor contact than might have been expected from simple thermodynamic considerations of the reduction in hole‐injection barrier. Thus the use of insulating dipolar surface layers at the charge‐injection contact to tune its workfunction to match the relevant transport level of the semiconductor is of limited utility to achieve ohmic contact in these devices.  相似文献   

15.
The reported NiOx interfacial layers in blue perovskite light-emitting diodes (PeLEDs) usually require high-temperature annealing and complex interface modification. Herein, we report a kind of uniform NiOx anode interfacial layer induced by H2O treatment, which effectively enhances the brightness and light-emitting efficiency of blue PeLEDs simultaneously. Compared to the as-prepared NiOx anode interfacial layer, H2O treatment renders uniform and pinhole-free NiOx morphology. The solution-processed perovskite blue emissive layer prepared atop the H2O-treated NiOx interfacial layer demonstrates enhanced photoluminescent property and superior morphology with low trap density. The blue PeLEDs employing H2O-treated NiOx as anode interfacial layer show a maximum luminance of 9052 cd/m2 and a maximum external quantum efficiency (EQE) of 1.80%, whereas the control device based on the as-prepared NiOx anode interfacial layer merely exhibits a maximum luminance of 3850 cd/m2 and an EQE of 0.88%, leading to about 135% and 104% increase in brightness and efficiency, respectively. The PeLEDs emit pure blue light with emission peak located at 482 nm and demonstrate superior spectral stability under different driving voltages and operating time.  相似文献   

16.
2‐(2‐tert‐Butyl‐6‐((E)‐2‐(2,6,6‐trimethyl‐2,4,5,6‐tetrahydro‐1H‐pyrrolo[3,2,1‐ij]quinolin‐8‐yl)vinyl)‐4H‐pyran‐4‐ylidene)malononitrile (DCQTB) is designed and synthesized in high yield for application as the red‐light‐emitting dopant in organic light‐emitting diodes (OLEDs). Compared with 4‐(dicyanomethylene)‐2‐tert‐butyl‐6‐(1,1,7,7,‐tetramethyljulolidyl‐9‐enyl)‐4H‐pyran (DCJTB), one of the most efficient red‐emitting dopants, DCQTB exhibits red‐shifted fluorescence but blue‐shifted absorption. The unique characteristics of DCQTB with respect to DCJTB are utilized to achieve a red OLED with improved color purity and luminous efficiency. As a result, the device that uses DCQTB as dopant, with the configuration: indium tin oxide (ITO)/N,N′‐bis(1‐naphthyl)‐N,N′‐diphenyl‐1,1′‐biphenyl‐4,4′‐diamine (NPB; 60 nm)/tris(8‐quinolinolato) aluminum (Alq3):dopant (2.3 wt %) (7 nm)/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline (BCP; 12 nm)/Alq3(45 nm)/LiF(0.3 nm):Al (300 nm), shows a larger maximum luminance (Lmax = 6021 cd m–2 at 17 V), higher maximum efficiency (ηmax = 4.41 cd A–1 at 11.5 V (235.5 cd m–2)), and better chromaticity coordinates (Commission Internationale de l'Eclairage, CIE, (x,y) = (0.65,0.35)) than a DCJTB‐based device with the same structure (Lmax = 3453 cd m–2 at 15.5 V, ηmax = 3.01 cd A–1 at 10 V (17.69 cd m–2), and CIE (x,y) = (0.62,0.38)). The possible reasons for the red‐shifted emission but blue‐shifted absorption of DCQTB relative to DCJTB are also discussed.  相似文献   

17.
The electronic structure of a bi‐layer hole extraction contact consisting of nickel oxide (NiOx) and molybdenum trioxide (MoO3) is determined via ultraviolet and X‐ray photoemission spectroscopy. The bi‐layer presents ideal energetics for the extraction of holes and suppression of carrier recombination at the interface. The application of the NiOx/MoO3 bi‐layer as the anode of organic bulk heterojunction solar cells based on PCDTBT/PC71BM leads to improved device performance, which is explained by an intricate charge transfer process across the interface.  相似文献   

18.
Although significant progress has been made in the development of vacuum‐deposited small‐molecule organic light‐emitting diodes (OLEDs), one of the most desired research goals is still to produce flexible displays by low‐cost solution processing. The development of solution‐processed OLEDs based on small molecules could potentially be a good approach but no intensive studies on this topic have been conducted so far. To fabricate high‐performance devices based on solution‐processed small molecules, the underlying nature of the produced films and devices must be elucidated. Here, the distinctive characteristics of solution‐processed small‐molecule films and devices compared to their vacuum‐deposited counterparts are reported. Solution‐processed blue OLEDs show a very high luminous efficiency (of about 8.9 cd A–1) despite their simplified structure. A better hole‐blocking and electron‐transporting layer is essential for achieving high‐efficiency solution‐processed devices because the solution‐processed emitting layer gives the devices a better hole‐transporting capability and more electron traps than the vacuum‐deposited layer. It is found that the lower density of the solution‐processed films (compared to the vacuum‐deposited films) can be a major cause for the short lifetimes observed for the corresponding devices.  相似文献   

19.
RuO2‐based mesoporous thin films of optical quality are synthesized from ruthenium‐peroxo‐based sols using micelle templates made of amphiphilic polystyrene‐polyethylene oxide block copolymers. The mesoporous structure and physical properties of the RuO2 films (mesoporous volume: 30%; pore diameter: ~30 nm) can be controlled by the careful tuning of both the precursor solution and thermal treatment (150–350 °C). The optimal temperature that allows control of both mesoporosity and nanocristallinity is strongly dependent on the substrate (silicon or fluorine‐doped tin oxide). The structure of the resulting mesoporous films are investigated using X‐ray diffraction, X‐ray photoelectron spectroscopy, and atomic force microscopy. Mesoporous layers are additionally characterized by transmission and scanning electron microscopy and ellipsometry while their electrochemical properties are analyzed via cyclic voltammetry. Thick mesoporous films of ruthenium oxide hydrates, RuO2 · xH2O, obtained using a thermal treatment at 280 °C, exhibit capacitances as high as 1000 ± 100 F g?1 at a scan rate of 10 mV s?1, indicating their potential application as electrode materials.  相似文献   

20.
The effect of solution‐processed p‐type doping of hole‐generation layers (HGLs) and electron‐transporting layer (ETLs) are systematically investigated on the performance of solution‐processable alternating current (AC) field‐induced polymer EL (FIPEL) devices in terms of hole‐generation capability of HGLs and electron‐transporting characteristics of ETLs. A variety of p‐type doping conjugated polymers and a series of solution‐processed electron‐transporting small molecules are employed. It is found that the free hole density in p‐type doping HGLs and electron mobility of solution‐processed ETLs are directly related to the device performance, and that the hole‐transporting characteristics of ETLs also play an important role since holes need to be injected from electrode through ETLs to refill the depleted HGLs in the positive half of the AC cycle. As a result, the best FIPEL device exhibits exceptional performance: a low turn‐on voltage of 12 V, a maximum luminance of 20 500 cd m?2, a maximum current and power efficiency of 110.7 cd A?1 and 29.3 lm W?1. To the best of the authors' knowledge, this is the highest report to date among FIPEL devices driven by AC voltage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号