首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   

2.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as stand‐alone electrodes for organic solar cells have been optimized using a solvent post‐treatment method. The treated PEDOT:PSS films show enhanced conductivities up to 1418 S cm?1, accompanied by structural and chemical changes. The effect of the solvent treatment on PEDOT:PSS has been investigated in detail and is shown to cause a reduction of insulating PSS in the conductive polymer layer. Using these optimized electrodes, ITO‐free, small molecule organic solar cells with a zinc phthalocyanine (ZnPc):fullerene C60 bulk heterojunction have been produced on glass and PET substrates. The system was further improved by pre‐heating the PEDOT:PSS electrodes, which enhanced the power conversion efficiency to the values obtained for solar cells on ITO electrodes. The results show that optimized PEDOT:PSS with solvent and thermal post‐treatment can be a very promising electrode material for highly efficient flexible ITO‐free organic solar cells.  相似文献   

3.
Highly conductive poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films are obtained using ionic liquids as additives. Upon adding 1‐ethyl‐3‐methylimidazolium tetracyanoborate (EMIM TCB) to the conducting polymer, the conductivity increases to 2084 S cm?1; this is attributed to the phase separation of PSS leading to a structural change in the film. A comparative study with 1‐butyl‐3‐methyl imidazolium tetrafluoroborate (BMIM BF4) shows that EMIM TCB gives higher conductivity and transmittance and can be regarded as one of the most promising additives for the preparation of indium tin oxide (ITO)‐free organic devices using PEDOT:PSS/EMIM TCB as electrodes.  相似文献   

4.
Flexible and transparent textile‐based conductors are developed by inkjet printing poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) onto polyethylene terephthalate (PET) mesh fabrics. The conductivity–transparency relationship is determined for textile‐based conductors with different thicknesses of the printed PEDOT:PSS film. The function of these textile‐based conductors is studied in the alternating current powder electroluminescent (ACPEL) devices and compared with indium tin oxide (ITO) glass in an ACPEL device of the same configuration. Textiles coated with conducting polymers are a potential alternative to coated polymer films for flexible, transparent conductors.  相似文献   

5.
To achieve the broad utilization of the full functionality of graphene (GR) in devices, a transfer method should be developed that can simplify the process without leaving residue of the insulating supporting layer on the surface of GR. Furthermore, stable GR doping without the use of an insulating polymer is required. Here, a new GR transfer method that uses a popular conducting polymer, poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), is reported as a new supporting layer for the transfer of GR films that are synthesized by chemical vapor deposition. The GR/PEDOT:PSS bilayer can be directly utilized without the removal process. Therefore, this transfer method simplifies the transfer process and solves the residue problem of conventional transfer methods. The stable doping of GR films is simultaneously achieved by using the PEDOT:PSS layer. The new GR/PEDOT:PSS hybrid electrodes are fully functional in polymer solar cells and polymer light‐emitting diodes, outperforming the conventionally transferred GR electrodes and indium tin oxide electrodes.  相似文献   

6.
Lipid bilayers are widely employed as a model system to investigate interactions between cells and their environment. Supported lipid bilayers (SLB) with integrated transmembrane proteins are emerging as a preferred platform for sensing applications. Challenges lie in the generation of SLB on surfaces which allow transduction of signals for characterization of lipid bilayer and incorporated transmembrane proteins. For the first time, the formation of SLBs is shown on films of the conducting polymer, poly(3,4‐ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS), using traditional methods for characterizing lipid bilayer quality and function (QCM‐D, FRAP) combined with impedance spectroscopy. Further, partial formation of SLBs on PEDOT:PSS based organic electrochemical transistors (OECTs) is successfully demonstrated, as well as the ability to integrate and sense the ion pore α‐hemolysin, confirming the sensitivity of the OECT as a transducer of biological membrane function. This work represents a highly promising first step toward the use of such OECTs for functional readout of transmembrane proteins in their native environment.  相似文献   

7.
Hybrid solar cells made of a p‐type conducting polymer, poly(3,4‐ethyl thiophene):polystyrenesulfonate (PEDOT:PSS), on Si have gained considerable interest in the fabrication of cost‐effective high‐efficiency devices. However, most of the high power conversion efficiency (PCE) performances have been obtained from solar cells fabricated on surface‐structured Si substrates. High‐performance planar single‐junction solar cells have considerable advantages in terms of processing and cost, because they do not require the complex surface texturing processes. The interface of single‐junction solar cells can critically influence the performance. Here, we demonstrate the effect of adding different surfactants in a co‐solvent‐optimized PEDOT:PSS polymer, which, in addition to acting as a p‐layer and as an anti‐reflective coating, also enhances the device performance of a hybrid planar‐Si solar cell. Using time‐of‐flight secondary ion mass spectrometry, we conduct three‐dimensional chemical imaging of the interface, which enables us to characterize the micropore defects found to limit the PCE. Upon minimizing these micropore defects with the addition of optimized amounts of fluorosurfactant and co‐solvent, we achieve a PEDOT:PSS/planar‐Si cell with a record high PCE of 13.3% for the first time. Our present approach of micropore defect reduction can also be used to improve the performance of other organic electronic devices based on PEDOT:PSS.  相似文献   

8.
A novel, highly efficient hole injection material based on a conducting polymer polythienothiophene (PTT) doped with poly(perfluoroethylene‐perfluoroethersulfonic acid) (PFFSA) in organic light‐emitting diodes (OLEDs) is demonstrated. Both current–voltage and dark‐injection‐current transient data of hole‐only devices demonstrate high hole‐injection efficiency employing PTT:PFFSA polymers with different organic charge‐transporting materials used in fluorescent and phosphorescent organic light‐emitting diodes. It is further demonstrated that PTT:PFFSA polymer formulations applied as the hole injection layer (HIL) in OLEDs reduce operating voltages and increase brightness significantly. Hole injection from PTT:PFFSA is found to be much more efficient than from typical small molecule HILs such as copper phthalocyanine (CuPc) or polymer HILs such as polyethylene dioxythiophene: polystyrene sulfonate (PEDOT‐PSS). OLED devices employing PTT:PFFSA polymer also demonstrate significantly longer lifetime and more stable operating voltages compared to devices using CuPc.  相似文献   

9.
The conductivity of a poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) film can be enhanced by more than two orders of magnitude by adding a compound with two or more polar groups, such as ethylene glycol, meso‐erythritol (1,2,3,4‐tetrahydroxybutane), or 2‐nitroenthanol, to an aqueous solution of PEDOT:PSS. The mechanism for this conductivity enhancement is studied, and a new mechanism proposed. Raman spectroscopy indicates an effect of the liquid additive on the chemical structure of the PEDOT chains, which suggests a conformational change of PEDOT chains in the film. Both coil and linear conformations or an expanded‐coil conformation of the PEDOT chains may be present in the untreated PEDOT:PSS film, and the linear or expanded‐coil conformations may become dominant in the treated PEDOT:PSS film. This conformational change results in the enhancement of charge‐carrier mobility in the film and leads to an enhanced conductivity. The high‐conductivity PEDOT:PSS film is ideal as an electrode for polymer optoelectronic devices. Polymer light‐emitting diodes and photovoltaic cells fabricated using such high‐conductivity PEDOT:PSS films as the anode exhibit a high performance, close to that obtained using indium tin oxide as the anode.  相似文献   

10.
Inkjet and transfer printing processes are combined to easily form patterned poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films as top anodes of all solution–processed inverted polymer light emitting diodes (PLEDs) on rigid glass and flexible plastic substrates. An adhesive PEDOT:PSS ink is formulated and fully customizable patterns are obtained using the inkjet printing process. In order to transfer the patterned PEDOT:PSS films, adhesion properties at interfaces during multistep transfer printing processes are carefully adjusted. The transferred PEDOT:PSS film on the plastic substrates shows not only a sheet resistance of 260.6 Ω/□ and a transmittance of 92.1% at 550 nm wavelength but also excellent mechanical flexibility. The PLEDs with spin‐coated functional layers sandwiched between the transferred PEDOT:PSS top anodes and inkjet‐printed Ag bottom cathodes are fabricated. The fabricated PLEDs on the plastic substrates show a high current efficiency of 10.4 cd A?1 and high mechanical stability. It is noted that because both Ag and PEDOT:PSS electrodes can be patterned with a high degree of freedom via the inkjet printing process, highly customizable PLEDs with various pattern sizes and shapes are demonstrated on the glass and plastic substrates. Finally, with all solution process, a 5 × 7 passive matrix PLED array is demonstrated.  相似文献   

11.
The performance of organic electronic devices is often limited by injection. In this paper, improvement of hole injection in organic electronic devices by conditioning of the interface between the hole‐conducting layer (buffer layer) and the active organic semiconductor layer is demonstrated. The conditioning is performed by spin‐coating poly(9,9‐dioctyl‐fluorene‐coN‐ (4‐butylphenyl)‐diphenylamine) (TFB) on top of the poly(3,4‐ethylene dioxythiophene): poly(styrene sulfonate) (PEDOT:PSS) buffer layer, followed by an organic solvent wash, which results in a TFB residue on the surface of the PEDOT:PSS. Changes in the hole‐injection energy barriers, bulk charge‐transport properties, and current–voltage characteristics observed in a representative PFO‐based (PFO: poly(9,9‐dioctylfluorene)) diode suggest that conditioning of PEDOT:PSS surface with TFB creates a stepped electronic profile that dramatically improves the hole‐injection properties of organic electronic devices.  相似文献   

12.
For efficient hole-extraction in solution processed organic solar cells the transparent indium-tin oxide (ITO) electrode is invariably pre-coated with a thin layer of the high work function conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate). Herein we show that thin films of partially oxidised multi-wall and single-wall carbon nanotubes are equally effective at facilitating hole-extraction in efficient (~2.7%) bulk-heterojunction organic solar cells based on poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) blends. Crucially, in contrast to PEDOT:PSS, deposition is from aqueous solutions of low acidity (pH 6–7) ensuring compatibility with ITO and other emerging conducting oxides. Furthermore, thin oxidised carbon nanotube films offer greater transparency in the near-infrared as compared to PEDOT:PSS films of comparable thickness. The functionality of these nano-structured films is demonstrated in relatively large area devices (~0.35 cm2) and the performance rationalised based on measurements of the electronic structure and morphology.  相似文献   

13.
Although conventional laser ablation (CLA) method has widely been used in patterning of organic semiconductor thin films, its quality control still remains unsatisfied due to the ambiguous photochemical and photothermal processes. Based on industrial available near‐infrared laser source, herein, a novel “layer‐filter threshold” (LFT) technique is proposed, which involves the decomposition of targeted “layer‐filter” and subsequent explosive evaporation process to purge away the upper layers instead of layer‐by‐layer ablation. For photovoltaic device with structure of metal/blend/PEDOT:PSS/ITO/glass, the PEDOT:PSS layer as the “layer‐filter” is first demonstrated to be effective, and then the merged P1–P2 line and metal electrode layer are readily patterned through the “self‐aligned” effect and regulation of ablation direction, respectively. The correlation between laser fluence and explosive ablation efficacy is also investigated. Finally, photovoltaic modules based on classical P3HT:PC61BM and low‐bandgap PBDT‐TFQ:PC71BM systems are separately fabricated following the LFT technique. It is found that over 90% of geometric fill factor is achieved while device performances maintain in a limited change with increased number of series cells. In comparison to conventional laser ablation methods, the LFT technique does not require sophisticated instruments but reaches comparable processing accuracy, which shows promising potential in the fabrication and commercialization of organic semiconductor thin‐film devices.  相似文献   

14.
We report on the use and stability of solution‐processed molybdenum oxide (sMoOx) thin films as anode‐modifying layers to replace conventionally used poly(3,4‐ethyldioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) layers in poly(3‐hexylthiophene):[6,6]‐phenyl C61 butyric acid methyl ester (P3HT/PC61BM) bulk heterojunction organic solar cells. Our results show that while as prepared devices using the two anode‐modifying layers possess similar performances, the sMoOx devices exhibit a staggering 20‐fold stability improvement in its performance half‐life compared with PEDOT/PSS devices, ~3400 h versus ~150 h, respectively. A further comparison of the stability between encapsulated and unencapsulated devices demonstrates the necessity for protection from atmospheric moisture and oxygen but again highlights the lucrative nature of sMoOx as a protective anode‐modifying layer compared with PEDOT/PSS even under ambient conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Development of electrode materials with well‐defined architectures is a fruitful and profitable approach for achieving highly‐efficient energy storage systems. A molecular‐scale hybrid system is presented based on the self‐assembly of CoNi‐layered double hydroxide (CoNi‐LDH) monolayers and the conducting polymer (poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate), denoted as PEDOT:PSS) into an alternating‐layer superlattice. Owing to the homogeneous interface and intimate interaction, the resulting CoNi‐LDH/PEDOT:PSS hybrid materials possess a simultaneous enhancement in ion and charge‐carrier transport and exhibit improved capacitive properties with a high specific capacitance (960 F g–1 at 2 A g–1) and excellent rate capability (83.7% retention at 30 A g–1). In addition, an in‐plane supercapacitor device with an interdigital design is fabricated based on a CoNi‐LDH/PEDOT:PSS thin film, delivering a significantly enhanced energy and power output (an energy density of 46.1 Wh kg–1 at 11.9 kW kg–1). Its application in miniaturized devices is further demonstrated by successfully driving a photodetector. These characteristics demonstrate that the molecular‐scale assembly of LDH monolayers and the conducting polymer is promising for energy storage and conversion applications in miniaturized electronics.  相似文献   

16.
Conductive poly(3,4-ethylenedioxythiophene):sulfonated polyimide (PEDOT: SPI) nanoscale thin films were successfully developed by addition of anionic surfactant and poly(vinyl alcohol) (PVA) for potential application in electronic devices. In this work, sodium dodecyl sulfate (SDS) surfactant was introduced into PEDOT:SPI aqueous suspensions to improve the dispersion stability of the particles in water, leading to high transparency and low contact angle of PEDOT:SPI thin films. All of the conducting polymer thin films showed high transparency of more than 85% transmission. Conductivity enhancement and good film-formation properties of PEDOT:SPI were achieved by adding various amounts of PVA to each polymer aqueous suspension because of the resulting conformational changes. The highest conductivity of 0.134 S/cm was achieved at 0.08 wt.% PVA in PEDOT:SPI2/SDS/PVA film, increased by a factor of 3.5 compared with the original material. In addition, PVA also improved the thermal stability of the conductive films, as verified by thermogravimetric analysis (TGA). The interactions between conducting polymers, PVA, and SDS surfactant affecting nano-thin film properties were revealed and investigated. Moreover, the interactions between SDS and SPI were proven to be different from those between SDS and poly(styrenesulfonate) (PSS) in conventional PEDOT:PSS solutions.  相似文献   

17.
Highly conductive and transparent poly‐(3,4‐ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) films, incorporating a fluorosurfactant as an additive, have been prepared for stretchable and transparent electrodes. The fluorosurfactant‐treated PEDOT:PSS films show a 35% improvement in sheet resistance (Rs) compared to untreated films. In addition, the fluorosurfactant renders PEDOT:PSS solutions amenable for deposition on hydrophobic surfaces, including pre‐deposited, annealed films of PEDOT:PSS (enabling the deposition of thick, highly conductive, multilayer films) and stretchable poly(dimethylsiloxane) (PDMS) substrates (enabling stretchable electronics). Four‐layer PEDOT:PSS films have an Rs of 46 Ω per square with 82% transmittance (at 550 nm). These films, deposited on a pre‐strained PDMS substrate and buckled, are shown to be reversibly stretchable, with no change to Rs, during the course of over 5000 cycles of 0 to 10% strain. Using the multilayer PEDOT:PSS films as anodes, indium tin oxide (ITO)‐free organic photovoltaics are prepared and shown to have power conversion efficiencies comparable to that of devices with ITO as the anode. These results show that these highly conductive PEDOT:PSS films can not only be used as transparent electrodes in novel devices (where ITO cannot be used), such as stretchable OPVs, but also have the potential to replace ITO in conventional devices.  相似文献   

18.
The development of new flexible and stretchable sensors addresses the demands of upcoming application fields like internet‐of‐things, soft robotics, and health/structure monitoring. However, finding a reliable and robust power source to operate these devices, particularly in off‐the‐grid, maintenance‐free applications, still poses a great challenge. The exploitation of ubiquitous temperature gradients, as the source of energy, can become a practical solution, since the recent discovery of the outstanding thermoelectric properties of a conductive polymer, poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS). Unfortunately the use of PEDOT:PSS is currently constrained by its brittleness and limited processability. Herein, PEDOT:PSS is blended with a commercial elastomeric polyurethane (Lycra), to obtain tough and processable self‐standing films. A remarkable strain‐at‐break of ≈700% is achieved for blends with 90 wt% Lycra, after ethylene glycol treatment, without affecting the Seebeck voltage. For the first time the viability of these novel blends as stretchable self‐powered sensors is demonstrated.  相似文献   

19.
Self‐healing electronic materials are of primary interest for bioelectronics and sustainable electronics. In this work, autonomic self‐healing of films obtained from mixtures of the conducting polymer poly(3,4‐ethylenedioxythiophene) doped with polystyrene sulfonate (PEDOT:PSS) and polyethylene glycol (PEG) is reported. The presence of PEG in PEDOT:PSS films decreases the elastic modulus and increases the elongation at break, thus leading to a softer material with enhanced self‐healing characteristics. In situ imaging of the cutting/healing process shows that the healing mechanism is likely due to flowing back of the material to the damaged area right after the cutting.  相似文献   

20.
Control of surface composition of a hole‐injecting conducting polymer complex, poly(3,4‐ethylenedioxy thiophene) (PEDOT) doped with a polystyrene sulfonate (PSS) has been conducted in the spin‐cast films. We found that the work function of the polymeric complex films formed via single spin‐coating can be greatly increased up to 5.44 eV by increasing the surface concentration of the PSS dopant. As a result, we improved the device efficiency and the lifetime of green emitting polymer light‐emitting diodes (PLEDs). This implies that the PSS surface layer of the films spin‐cast from the conducting polymer complexes plays a key role in making high performance PLEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号