首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A simplified dual-pressure ammonia-water absorption power cycle (DPAPC-a) using low grade energy resources is presented and analyzed. This cycle uses turbine exhaust heat to distill the basic solution for desorption. The structure of the cycle is simple which comprises evaporator, turbine, regenerator (desorber), absorber, pump and throttle valves for both diluted solution and vapor. And it is of high efficiency, because the working medium has large temperature difference in evaporation and small temperature difference in absorptive condensation, which can match the sensible exothermal heat resource and the cooling water simultaneously. Orthogonal calculation was made to investigate the influence of the working concentration, the basic concentration and the circulation multiple on the cycle performance, with 85–110 °C heat resource and 20–32°C cooling water. An optimum scheme was given in the condition of 110 °C sensitive heat resource and 20 °C cooling water, with the working concentration of 0.6, basic concentration of 0.385, and circulation multiple of 5. The thermal efficiency and the power recovery efficiency are 8.06 % and 6.66%, respectively. The power recovery efficiency of the DPAPC-a is 28.8% higher than that of the steam Rankine cycle (SRC) and 12.7% higher than that of ORC (R134a) under the optimized situation.  相似文献   

2.
A novel loop heat pipe (LHP) cooling device for high power LED is developed. The thermal capabilities, including startup performance, temperature uniformity and thermal resistance of the loop heat pipe under different heat loads and incline angles have been investigated experimentally. The obtained results indicate that the thermal resistance of the heat pipe heat sink is in the range of 0.19–3.1 K/W, the temperature uniformity in the evaporator is controlled within 1.5°C, and the junction temperature of high power LED can be controlled steadily under 100°C for a heat load of 100 W.  相似文献   

3.
水环式真空泵性能对300MW机组经济性影响   总被引:1,自引:0,他引:1  
基于凝结换热理论和气体状态方程,建立了空气浓度对凝汽器平均传热系数和压力影响的数学模型;结合真空泵在不同工作水温下的性能曲线,得到了300 MW机组在不同负荷、不同循环冷却水温度下凝汽器平均传热系数与工作水温的关系;分析了水环式真空泵工作水温对机组经济性的影响.该研究对改善凝汽器真空及维持真空泵工作性能的稳定具有一定的指导意义.  相似文献   

4.
In order to study the cooling mechanism of embankment with block stone interlayer under open and closed conditions,an experimental railway section was built and data within one freeze-thaw cycle were collected. The results explain well the cooling mechanism of embankment with block stone interlayer. Under the open condition in cold seasons,the enforced convection effect occurs within block stone interlayer when the wind speed is large;however,the weak air convection occurs within the block stone interlayer near the bottom of the embankment when the wind speed is slow. Under the open condition in warm seasons,heat conduc-tion occurs within block stone interlayer due to the change in wind speed and di-rection. Under the closed condition,however,the enforced convection within block stone interlayer is so weak that heat conduction is dominant in the whole year be-cause wind is blocked. Therefore,the cooling effect of embankment with a block stone interlayer to the soil beneath it is produced by enforced convection and weak free air convection;both its process and the cooling intensity are controlled by the local wind speed and direction. Because of the difference in the cooling effects,the soil temperature beneath the embankment has a temperature difference of 2℃―4℃ between the open and closed conditions.  相似文献   

5.
为提高电池热管理液冷系统的均温性,研究一种铝槽式均热板和直流式液冷板相结合的复合液冷系统,并建立相应的三维传热模型。采用Volume-of-fluid(VOF)多相流模型,模拟均热板槽道内丙酮工质的气液相变过程,以及与液冷流道的耦合传热过程,并将模拟结果与实验结果进行了对比,验证了模型的正确性。研究结果显示,均热板可以提高液冷系统散热过程中的均温性,加热表面的温差可以控制在2.72 K以内。通过机理分析发现,其原因与均热板内部气液工质的热质传输过程有关。在液冷系统冷却液沿程温升的影响下,均热板腔室中的丙酮气相工质在长度方向上存在定向输运现象,相变产生的蒸汽会携带热量从高温区往低温区流动,从而抑制液冷板低温冷却水对加热表面温度分布的影响,提高了均温性能。  相似文献   

6.
Heat exchange performance of vertical U-tube heat exchanger was studied with two different borehole fill materials and CFD software. Borehole surface temperature and water temperature distribution were simulated on the condition of continuous operation for 8 h in winter with inlet water temperature being 10 ℃. The results show that there is no obvious difference on heat exchanger performance between the two different borehole fill materials.  相似文献   

7.
An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38–0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 °C, respectively.  相似文献   

8.
为解决地铁站冷却塔设置难题,提出了一种采用低速电机驱动旋转布水装置的间接蒸发冷却器,在两种布置方式下,对其换热性能进行了单因素实验,并运用正交实验法对较优布置方式下影响换热器换热的因素进行了分析。结果表明:两种布置方式下,喷嘴与蒸发冷却器的间距、两组换热管束间距均存在最佳值,喷嘴双侧旋转布水优于单侧旋转布水;换热器平行气流布置且喷嘴双侧旋转布水为较优布置方式,此时,换热器换热量随喷水量、转速、空气速度、冷却水进口温度的增加以及喷水温度、空气温度的降低而增大,其中,冷却水进口温度对换热器换热影响最为显著,其他因素对其换热的影响从主到次顺序为:喷水量、空气温度、空气速度、喷水温度、转速、冷却水流量。  相似文献   

9.
Two-dimensional (2D) transient coupled finite element model was developed to compute the temperature and stress field in cast billets, so as to predict the defects of the I-type billets made from AZ31 magnesium alloy and find the causes and solutions for surface cracks and shrinkages during direct-chill (DC) casting process. Method of equivalent specific heat was used in the heat conduction equation. The boundary and initial conditions used for primary and secondary cooling were elucidated on the basis of the heat transfer during the solidification of the billet. The temperature and the thermal-stress fields were simulated with the thermal-structural coupled module of ANSYS software. The influences of casting parameters on the distributions of temperature and stress were studied, which helped optimize the parameters (at pouring temperature of 680 °C, casting speed of 2 mm/s, heat-transfer coefficient of the second cooling equals to 5 000 W/m2·°C−1). The simulation results of thermal stress and strain fields reveal the formation mechanism of some casting defects, which is favourable for optimizing the casting parameters and obtain high quality billets. Some measures of controlling processes were taken to prevent the defects for direct-chill casting billets. Funded by the 973 National Grand Theoretical Research Program(No. 2007CB613700), the National Sci&Tech Support Program(No. 2007BAG06B04), National Natural Science Foundation of China (No. 50725413), and the Natural Science Foundation of Chongqing(No. CST, 2007bb4413)  相似文献   

10.
A new type water-cooled heat dissipater for multiple high-power thyristors in explosion-proof shell used in coal mine was designed, and then, the numerical computation of the three-dimensional steady-state temperature distributions under different working conditions for cooling core was conducted in order to understand in detail the heat transfer performance. Based on the computation results, the temperature differences and the maximum heat transfer rates were given. These results of the study on the heat dissipater lay a basis for optimising its structure design and guiding its operation.  相似文献   

11.
Gleeble-1500D thermal simulation tester was employed in the hot-compression investigation of as-cast nuclear 304 austenitic stainless steel under conditions: deformation temperature 950―1200℃; deformations 30% and 50%; deformation rates 0.01 and 0.1 s?1. The results show that the flow stress decreases with temperature rise under the same strain rate and deformation, that the flow stress increases with deformation under the same temperature and strain rate, and that the flow stress increases with strain rate...  相似文献   

12.
In the construction of the tissue engineered dermal equivalent, the dermal fibroblast plays a crucial role[1]. While the fibroblasts need time to proliferate, synthesize, and se-crete extracellular matrix in the three-dimensional scaffold postseeding, a degradablescaffold commences disintegration over time. This may lead to an unusable product, if proper preservation does not conduct. Cryopreservation could solve this problem. The possibility of the long-term banking of cells and tissues would…  相似文献   

13.
运用有限元软件Ansys对螺栓法兰接头进行模拟,得到了在预紧和操作工况下垫片的应力分布,计 算出不同内压工况下垫片的应力。采用MonteCarlo法在管道工作压力不断波动时进行可靠性分析,创建极限方程 并根据极限方程应用大型软件Matlab以变量的分布类型对变量进行反复随机抽样,计算出不同工作压力下螺栓法 兰泄漏的概率。分析结果表明,工作压力的波动产生的附加载荷对螺栓法兰泄漏会产生很大的影响,必须加以足够 的重视。  相似文献   

14.
开发了一种微小矩形多槽道平板热管,并阐述了此种热管的结构、原理,推导出了其理论毛细极限。通过实验分析了工作温度、充液率、不同工作介质和倾角等因素对该热管传热性能的影响,得到冷凝段及蒸发段表面传热系数的实验关联式,可用于指导工程设计。研究表明,微小矩形多槽道平板热管具有高传热特性,在电子器件冷却等方面有良好的应用前景。  相似文献   

15.
Heat dissipation of electronic devices keeps as a tough issue for decades. As the most classical coolant in a convective heat transfer process, water has been widely adopted which however inherits with limited thermal conductivity and relies heavily on mechanical pump. As an alternative, the room temperature liquid metal was increasingly emerging as an important coolant to realize much stronger enhanced heat transfer. However, its thermal capacity is somewhat lower than that of water, which may restrict the overall cooling performance. In addition, the high cost by taking too much amount of liquid metal into the device also turns out to be a big concern for practical purpose. Here, through combining the individual merits from both the liquid metal with high conductivity and water with large heat capacity, we proposed and demonstrated a new conceptual cooling device that integrated hybrid coolants, radiator and annular channel together for chip thermal management. Particularly, the electrically induced actuation effect of liquid metal was introduced as the only flow driving strategy, which significantly simplified the whole system design. This enables the liquid metal sphere and its surrounding aqueous solution to be quickly accelerated to a large speed under only a very low electric voltage. Further experiments demonstrated that the cooling device could effectively maintain the temperature of a hotpot (3.15 W/cm2) below 55ºC with an extremely small power consumption rate (0.8 W). Several situations to simulate the practical working of the device were experimentally explored and a theoretical thermal resistance model was established to evaluate its heat transfer performance. The present work suggests an important way to make highly compact chip cooling device, which can be flexibly extended into a wide variety of engineering areas.  相似文献   

16.
Experiments were conducted to investigate the cooling manner of an ultra-thick hot aluminum alloy plate during multistage quenching. Cooling curves and heat flux curves of different rapid quenching flux varied from 23 to 40 L min~(-1) and were analyzed in detail. In this investigation, cooling process was divided into the following four steps:(I) starting step,(II) rapid cooling step,(III) slow cooling step, and(IV) stopping step. Based on the curves, the calculation method for surface transfer coefficient was provided, and the effects of coefficient on surface temperature and quenching flux were discussed. Results showed that the transfer coefficient disagreed with heat flux and that it is a nonlinear function of surface temperature. The highest coefficient was observed not in the rapid cooling step with the largest heat flux but in the slow cooling step with lower heat flux. The coefficient increased with surface temperature ranging from 480 to 150°C, and a coefficient peak appeared in the temperature range of 150–100°C. The coefficient also increased with quenching flux. Finally, a simulation was performed using the finite element method to verify the reliability of the coefficient results, which showed good agreement with the measurement values.  相似文献   

17.
Zhang  ZhiWei  Hu  DingHua  Li  Qiang  Liu  Chao  Zhou  Fan 《中国科学:技术科学(英文版)》2021,64(10):2099-2109

Visualization experiments are carried out to investigate the atomization characteristics of R1336mzz flash spray cooling. The influences of superheat, spray distance, and nozzle orifice diameter on spray cooling performance are analyzed experimentally. As the superheat increases, finer droplets and thinner liquid film are observed; this is helpful to improve the two-phase heat transfer efficiency. Enlarging atomization angle under high superheat is also observed for flash spray cooling, and it benefits for reducing the spray distance. It can be found that when the inlet superheat is 19.8°C and the spray distance is 6 mm, the critical heat flux (CHF) reaches 251 W/cm2 and the maximum heat transfer coefficient (HTC) reaches 37.4 kW/(m2 °C), which are 55% and 11.6% higher than those when the inlet subcooling is 6.9°C and the spray distance is 12 mm, respectively. Using flash spray reduces the spray distance, which benefits for designing compact spray cooling device. In addition, the nozzle orifice diameter has great influence on the cooling performance of flash spray, and the choice of the nozzle depends on the superheat. This study provides a physical insight into the heat transfer enhancement in flash spray cooling.

  相似文献   

18.
探讨拼装式板式换热器在辐射供冷暖工程中的应用及换热工况匹配等问题,根据不同的工况选择不同的板片结构进行工况匹配.结果表明,用于辐射供冷暖工程时,应同时考虑板片的换热性能和流动性能.虽然辐射供冷暖系统均属于大流量、小温差的换热工况,但辐射供冷系统的换热温差及单位面积质量流量小于辐射供暖系统.长宽比大、波纹高度小、间距小及角度大的板型较为适用;而辐射供暖系统更适合采用长宽比小、波纹高度大、间距大及角度小的板型.  相似文献   

19.
水冷多联分离式热管系统被提出用于冷却数据机房,该系统综合了自然冷却技术和变频技术的优点,能够有效地降低制冷系统的能耗。为了探索水冷多联分离式热管系统相对于传统空调系统的节能潜力:首先,建立了水冷多联分离式热管系统的传热模型并且利用实验进行了验证,得知其相对误差在±10%以内;其次,通过建立的水冷多联分离式热管系统的能耗模型确定了系统的最佳送风温度设定值和供水温度设定值,其值分别是24?C和15?C;最后,对比分析冷却系统#1~#3的全年运行能耗,获得了水冷多联分离式热管系统(#3)相对于是否利用湖水源的传统空调系统(#2与#1)的节能率,其节能率分别为11.3%和68.8%。  相似文献   

20.
湿式冷却塔热力性能数值分析   总被引:1,自引:0,他引:1  
对气流运动采用标准k-ε湍流模型,喷淋区和雨区采用离散相模型计算,对填料区建立了基于Poppe理论的数值求解模型。基于该模型,在不考虑自然风情况下,对某300 MW机组自然通风湿冷塔的热质交换进行数值模拟,分析了淋水密度、进塔水温、喷嘴数和水滴直径对冷却塔热力特性的影响。计算结果表明:基于CFD软件的冷却塔数值求解模型有很好的适用性,淋水密度和水滴直径对出塔水温影响很大,为进一步完善冷却塔的设计与运行提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号