首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
CFD-PBM耦合模型模拟气液鼓泡床的通用性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张华海  王铁峰 《化工学报》2019,70(2):487-495
通过对不同操作压力和不同液体性质气液鼓泡床的模拟值与实验数据进行对比,从而验证CFD-PBM耦合模型的通用性。结果表明,CFD-PBM耦合模型在加入了气泡破碎修正因子后,可以很好地预测压力对鼓泡床流体力学行为的影响趋势,当压力升高时,气含率显著升高。不同液体黏度和表面张力条件下CFD-PBM耦合模型的模拟结果与实验结果均吻合较好。随液体黏度增大,气泡破碎速率减小,气泡尺寸分布变宽,曳力显著下降,气含率随之降低。随表面张力减小,气泡破碎速率增大,气泡变小,气含率升高。CFD-PBM耦合模型具有很好的通用性,原因在于考虑了压力、液体黏度和表面张力对气泡聚并、破碎和气液相间作用力的影响。  相似文献   

2.
In the present work, gas-liquid flow dynamics in a bubble column are simulated with CFDLib using an Eulerian-Eulerian ensemble-averaging method in a two-dimensional Cartesian system. The two-phase flow simulations are compared to experimental measurements of a rectangular bubble column performed by Mudde et al. [1997. Role of coherent structures on Reynolds stresses in a 2-D bubble column. A.I.Ch.E. Journal 43, 913-926] and a cylindrical bubble column performed by Rampure et al. [2003. Modeling of gas-liquid/gas-liquid-solid flows in bubble columns: experiments and CFD simulations. The Canadian Journal of Chemical Engineering 81, 692-706] for low and high superficial gas velocities, respectively. The objectives are to obtain grid-independent numerical solutions using CFDLib to reconcile unphysical results observed using FLUENT with increasing grid resolutions [Law, D., Battaglia, F., Heindel, T.J., 2006. Numerical simulations of gas-liquid flow dynamics in bubble columns. In: Proceedings of the ASME Fluids Engineering Division, IMECE2006-13544, Chicago, IL], and to validate computational fluid dynamics (CFD) simulations with experimental data to demonstrate the use of numerical simulations as a viable design tool for gas-liquid bubble column flows. Numerical predictions are presented for the local time-averaged liquid velocity and gas fraction at various axial heights as a function of horizontal or radial position. The effects of grid resolution, bubble pressure (BP) model, and drag coefficient models on the numerical predictions are examined. The BP model is hypothesized to account for bubble stability, thus providing physical solutions.  相似文献   

3.
A gas–liquid Eulerian computational fluid dynamics (CFD) model coupled with a population balance equation (PBE) was presented to investigate hydrodynamics of an air–water bubble column (1.8 m in height and 0.1 m in inner diameter) under elevated pressure in terms of pressure drop, gas holdup, mean bubble size, and bubble surface area. The CFD-PBE model was modified with three pressure correction factors to predict both the total gas holdup and the mean bubble size in the homogeneous bubbly flow regime. The three correction factors were optimized compared to experimental data. Increasing the pressure led to increasing the density, reducing the bubble size, and increasing the gas holdup. The bubble size distribution moved toward a smaller bubble size, as the pressure increased. The modified CFD-PBE model validated with experimental data and empirical models represented well hydrodynamics of the bubble column at P = 0.1, 1.5, and 3.5 MPa.  相似文献   

4.
Two numerical models for studying the dynamics of formation and rise of single bubbles in high‐viscosity ionic liquids were implemented using the level‐set method. The models describe two stages of bubble dynamics: bubble formation at the inlet nozzle and bubble displacement across the column. The models were experimentally validated through a laboratory‐scale bubble column using water‐glycerol mixtures and two imidazolium‐type ionic liquids. The models were consistent with the experimental tests for Reynolds numbers < 5. Outside this range, the models tend to underestimate the bubble terminal velocity, which can be explained by the effect of the high velocity and pressure gradients close to the gas‐liquid interface. The models also predicted the velocity and pressure fields near the bubble surface before and after detachment.  相似文献   

5.
A multiphase computational fluid dynamics(CFD) model coupled with the population balance equation(PBE) was developed in a homogeneous air–kerosene bubble column under elevated pressure(P). The specific pressure drop(DP/L), gas holdup(a_G), and Sauter mean diameter(d_(32)) were experimentally measured in the bubble column with 1.8 m height and 0.1 m inner diameter, which was operated at a superficial gas velocity of 12.3 mm·s~(-1), and P = 1–35 bar(1 bar = 10~5 Pa). A modified drag coefficient model was proposed to consider the effect of bubble swarm and pressure on hydrodynamics of the bubble column.The Luo breakage model was modified to account for liquid density, viscosity, surface tension and gas density. The DP/L, a_G, and d_(32) obtained from the CFD model were compared with experimental data,and the gas density-dependent parameters of the CFD model were identified. With increasing P from 1 to 35 bar, the aGvaried from 5.4% to 7.2% and the d_(32) decreased from 2.3 to 1.5 mm. The CFD-PBE model is applicable to predict hydrodynamics of pressurized bubble columns for gas–organic liquid in the homogeneous regime.  相似文献   

6.
This work is a study of the effect of liquid properties on the performance of bubble column reactors with fine pore spargers. Various liquids covering a range of surface tension and viscosity values are employed, while the gas phase is atmospheric air. A fast video technique is used for visual observations and, combined with image processing, is used for gas holdup and bubble size measurements. New data on average gas holdup values, bubble size distributions and Sauter diameters are presented and are consistent with existing physical models on coalescence/breakage. A correlation based on dimensionless groups for the prediction of gas holdup in the homogeneous regime is proposed and found to be in good agreement with available data.  相似文献   

7.
Dynamic simulation of a 2D bubble column   总被引:1,自引:0,他引:1  
The present paper demonstrates how 2D, dynamic simulations of a flat bubble column are feasible, applying state-of-the-art dynamic turbulence models, when an appropriate turbulent dispersion term is applied in the conservation equation for the gas volume fraction. The kω turbulence model yielded a better qualitative prediction of the bubble plume than the kε model, due to the low-Reynolds number treatment of the former model. The simple mixing length turbulence model gave the best prediction of the meandering plume, without any dispersion term. The mixing length model is, however, almost identical to a Large-Eddy simulation when run time-dependent on a fine mesh, and should be applied with care due to the use of a constant turbulence length scale and the inherent 3D nature of turbulence. By refining the mesh to the extreme end, it was shown that an apparently grid independent numerical solution was really grid-dependent, even when dynamic turbulence models were applied. The apparently grid independent solution was computed with an increment in the computational mesh that was of the same size as an equilibrium Kolmogorov length scale.  相似文献   

8.
加压大型气液鼓泡床中气含率的实验和关联   总被引:2,自引:1,他引:2  
对内径0.3 m、高6.6 m的加压鼓泡床中的气含率进行了系统研究,得出了表面张力、粘度、压力等对气含率的影响规律;结果表明,在实验范围内,鼓泡床中的气含率随表面张力和粘度的升高而降低,随压力的升高而升高;并用气泡聚并的能量理论作了定性的解释. 根据542组实验数据得出了气含率的关联式.  相似文献   

9.
基于气泡动力学属性的现有认识,把气泡分成大、小气泡,首次建立了完整的双气泡相-群平衡模型(TBPBM)以预测气泡尺寸.通过编写用户自定义程序实现了TBPBM模型、Luo破碎模型以及Prince 聚并模型,并耦合TBPBM与CFD双流体模型对直径440 mm鼓泡塔进行数值模拟,详细考察了网格与数值格式对TBPBM-CFD模型模拟结果的影响.结果表明,网格与数值格式对各物理变量的模拟结果影响非常大,特别是网格和体积分数方程对流项离散格式的影响最为显著.随着计算精度的提高,湍流耗散率和整体气含率分布梯度增大,气泡平均直径减少,大气泡所占气相比率降低,液相速度及气含率径向分布与实验值更趋吻合.  相似文献   

10.
通过二维和三维CFD-PBM耦合模型对空气-醋酸体系中流体力学参数进行数值模拟,采用表面张力修正曳力模型与聚并模型,考察了醋酸浓度对鼓泡塔内气含率、气泡大小分布及轴向液速等参数的影响,与差压法、光纤探针和电阻层析成像技术(ERT)测量的实验数据进行了对比,并讨论分析了气含率和气泡直径等流体力学参数的模拟结果。结果表明,醋酸浓度在70%~80%(质量分数)范围内平均气含率存在最大值,且平均气含率的预测值在±10%误差内,三维模拟结果和ERT实验值吻合较好,说明修正后的模型在不同浓度醋酸体系中具有较好的预测性。  相似文献   

11.
According to literature, few experiments are performed in organic solvents which are mostly used in commercial gas-liquid reactors. However, it is commonly accepted that data obtained in aqueous solution allow to predict the surface tension effects, and to model the behaviour of organic solvents. In this work, we examine the validity of this approximation.In this objective, the flows observed in two pure media having similar viscosity but different surface tension—respectively, water (reference) and cyclohexane (solvent)—are successively compared at two scales: in a bubble column and in bubble plumes.In bubble plumes, as expected, the mean bubble size is smaller in the medium having the smallest surface tension (cyclohexane), but for this medium the destabilisation of flow is observed to occur at smaller gas velocity, due to break-up and coalescence phenomena. In bubble column, these phenomena induce the bubbling transition regime at lower gas velocity, whatever the operating conditions for liquid phase: batch or continuous. Consequently, when the two media are used at similar gas superficial velocity, but in different hydrodynamic regimes, greater gas hold-up and smaller bubble diameter can be observed in water; the interfacial area is then not always higher in cyclohexane.This result differs from the behaviour observed in the literature for aqueous solutions. The analysis of bubble plumes in aqueous solutions of butanol shows that this difference is due to a fundamental difference in coalescent behaviour between pure solvents and aqueous mixtures: the surface tension effect is less important in pure liquid than in aqueous solutions, because of the specific behaviour of surfactants.It is then still difficult to predict a priori the bubbling regime or the flow characteristics for a given medium, and all the more to choose an appropriate liquid as a model for industrial solvents.  相似文献   

12.
A multiphase Volume‐of‐fluid (VOF) model was developed to gain further insights into the reactive flow parameters and electrical capacitance tomography (ECT) measurements on the remediation of hazardous organic pollutants. Low ozone bubble frequencies were obtained for high surface tension fluids, and the liquid viscosity affected the ozone bubbling frequency. The VOF model indicated that the increase of inlet gas velocity enriched the ozone bubble detachment and concomitantly generated larger ozone bubbles, decreasing the detoxification rates. VOF mappings and ECT visualizations of gas‐liquid unveiled preferential routes and highlighted the attenuation of the axisymmetric behavior of the ozonation bubble column under high‐interaction regimes.  相似文献   

13.
针对SBS加氢反应器开发与设计,以SEBS-1650己烷溶液为液相,采用差压法和床层塌落法研究了气液鼓泡塔中高黏度溶液的流体力学行为,考察了黏度对低表面张力溶液的气含率、大小气泡气含率、大小气泡上升速度和比表面积等因素的影响。结果表明,随黏度增加,大气泡增多,气含率明显降低,塔内流型处于湍流区;由床层塌落曲线确定鼓泡塔内存在三种类型的气泡:大气泡、小气泡及细小气泡,随黏度增加,小气泡与细小气泡逐渐减少;黏度对大小气泡的上升速度略有影响,比表面积随黏度增加而明显降低。根据实验结果给出了大小气泡气含率与平均气含率的计算公式。  相似文献   

14.
The influence of surface tension upon the dissolution and growth of a stationary, isolated gas bubble in a fluid is examined. It is demonstrated that for small gas undersaturation of the liquid, surface tension corrections for bubble dissolution are significant for nearly the entire period of bubble dissolution. Also, it is shown that for slight supersaturation of the liquid, when bubble growth occurs, surface tension corrections are non-negligible too. Furthermore, comparisons are made with the quasi-stationary results which seem to indicate that surface tension corrections are of greater significance than convective corrections for small undersaturations. In the case of large undersaturations surface tension corrections are only of importance when the radius of the bubble is small.  相似文献   

15.
靳海波  杨索和  佟泽民 《化工学报》2004,55(9):1523-1527
引 言鼓泡床反应器以其具有良好的传热、传质、相间充分接触和高效的可连续操作等特点在许多领域得到了广泛的应用 ,如氧化、加氢、烷基化、污水处理等工业过程 .在鼓泡反应器中气体以分散相的形式存在 ,轴向气含率分布是反映气泡在鼓泡塔反应器内运动行为的重要参数之一 .虽然采用了各种测量方法对流体力学行为进行了大量研究[1~ 3] ,取得了一定的研究成果 ,但工业过程往往是在高温高压的条件下操作 ,大部分的测量方法难以适应这种条件 ,所以探求新的测试技术尤为重要 .  γ射线透射技术不仅用于塔设备的故障检测 ,而且用于其他的石油…  相似文献   

16.
A practical population balance model was used to evaluate the bubble size distribution in a bubble column. In addition, the bubble size distribution in the bubble column was measured at different gas velocities by photography and analysis of the pictures. Four types of liquid, i.e., water and three petroleum‐based liquids, were used in the experiments. The gas phase was air. It was found that the existing models in the literature are not able to satisfactorily predict the experimentally measured bubble size distribution. The model can be corrected by applying a correction factor to the energy dissipation rate. The corrected model fits the experimental bubble size distribution considerably better than the existing models. The variation of this correction factor is reported for different systems at different gas velocities.  相似文献   

17.
利用热膜测速仪测得了气液逆流鼓泡塔内不同表观气速、表观液速和径向位置下的气液信号,采用改进的阈值法进行分析,得到塔内气含率的径向分布。结果表明气含率在各个截面上都是从塔中心到塔壁逐渐减小;同时利用计算流体力学方法对气液逆流的鼓泡塔内的气液两相流动进行了模拟,计算了不同气速和不同液速下的气含率,计算结果与试验数据吻合较好。  相似文献   

18.
刘鑫  张煜  张丽  靳海波 《化工学报》2017,68(1):87-96
目前,多数文献报道了冷态加压湍动鼓泡塔内流动特征,并且通过实验数据回归相关经验关联式。然而,此类关联式适用范围有限,难以直接外推到工业鼓泡塔反应器条件。因此,在FLUENT平台上建立了基于气泡群相间作用力的、动态二维加压鼓泡塔计算流体力学模型。通过数值模拟考察了操作压力为0.5~2.0 MPa,表观气速为0.20~0.31 m·s-1,内径0.3 m鼓泡塔内流场特性参数分布,并且与冷态实验数据进行比较。结果表明,采用修正后的气泡群曳力模型、径向力平衡模型以及壁面润滑力模型描述气泡群相间作用力,能够较为准确地反映平均气含率和气含率径向分布随操作压力和表观气速变化的规律。  相似文献   

19.
Gas holdup, effective interfacial area and volumetric mass transfer coefficient were measured in two and three phase downflow bubble columns. The mass transfer data were obtained using the chemical method of sulfite oxidation, and the gas holdup was measured using the hydrostatic technique. Glass beads and Triton 114 were used to study the effects of solids and liquid surface tension on the gas holdup and the mass transfer parameters a and kLa. The gas holdup in three phase systems was measured for non-wettable (glass bead) and wettable (coal and shale particles) solids.

The mass transfer data obtained in the downflow bubble column were compared with the values published for upflow bubble columns. The results indicate that in the range of superficial gas velocities (0.002-0.025) m/s investigated, the values of the mass transfer coefficient were of the same order of magnitude as those observed in upflow systems, but the values of interfacial area were at least two fold greater. Also, the results showed that the operating variables and the physical properties had different influences on a and kLa in the downflow bubble column. Correlations for a and kLa for the downflow bubble column are proposed which predict the data with adequate accuracy in the range of operating conditions investigated.  相似文献   

20.
In order to address the bubble formation and movement in air-water two-phase flow,single bubble rising in stagnant water is experimentally studied by digital image processing.Bubbles are released individually from the submerged orifices with different diameters(1.81 mm,2.07 mm,2.98 mm,3.92 mm)at different detachment frequency.Images are recorded by a high-speed video camera and processed by digital image processing technique. The factors impacting the formed volume of bubble are discussed.The experimental results showed that a threshold of gas flow rate(400 mm 3 ·s- 1)divides the bubble formation into two regimes:the constant volume regime and the growing volume regime.Especially for the growing volume regime,the surface tension is taken into account.The bubble volume is consisted of two parts:the surface tension impacting part and the gas volume flow rate impacting part.An improved correlation for bubble volume prediction is developed for the two regimes and better coincidence with the experiment data than the previous models is obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号