首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The current research on ferroelectric photovoltaic materials is concentrated on enhancing the output photocurrent. As solar cells operate at high temperatures, it is crucial to take into account the effect of increasing temperatures on ferroelectric photovoltaics. In this study, an LNO (lanthanum nickelate, LaNiO3)/BFO (bismuth ferrate, BiFeO3)/ITO (indium tin oxide) device is constructed on a mica substrate by sol–gel method. The device achieves output photocurrent enhancement at a wide temperature range (33–183 °C), with the largest photocurrent enhancement at 130 °C, which is 178% relative to room temperature, and the output power is also increased by 9.88 times. At the same time, compared with BFO bulk, it is found that the performance of BFO film is always higher than that of bulk in the test temperature range, and the output photocurrent of BFO film at room temperature is 104 times higher than that of bulk. This article investigates the effect of high temperatures on ferroelectric photovoltaics and also provides a strategy for enhancing the photovoltaic performance of ferroelectric films, providing guidance for future applications of ferroelectric films in flexible solar cells and other applications.  相似文献   

2.
Harvesting the available forms of energies in the environment to create self‐powered nanosystems is now becoming a technological reality. Self‐powered nanodevices and nanosystems are expected to play a crucial role in the future development of nanotechnology because of their specific role in fundamental studies and nanotechnological applications, mainly due to their size‐dependent properties and independent, sustainable, maintainance‐free operation. As a new field in self‐powered nanotechnology‐related research, self‐powered photodetectors have been developed which exhibit a much faster photoresponse and higher photosensitivity than the conventional photoconductor‐based photodetectors. Herein, the energy‐havesting techniques are discussed and their prospects for application in self‐powered photodetectors are summarized. Moreover, potential future directions of this research area are highlighted.  相似文献   

3.
Flexible and self‐powered perovskite photodetectors attract widespread research interests due to their potential applications in portable and wearable optoelectronic devices. However, the reported devices mainly adopt an independent layered structure with complex fabrication processes and high carrier recombination. Herein, an integrated ferroelectric poly(vinylidene‐fluoride‐trifluoroethylene) (P(VDF‐TrFE)) and perovskite bulk heterojunction film photodetector on the polyethylene naphthalate substrate is demonstrated. Under the optimum treatment conditions (the polarization voltage and time, and the concentration of P(VDF‐TrFE)), the photodetector exhibits a largely enhanced performance compared to the pristine perovskite device. The resulting device exhibits ultrahigh performance with a large detectivity (1.4 × 1013 Jones) and fast response time (92/193 µs) at the wavelength of 650 nm. The improved performance is attributed to the fact that the polarized P(VDF‐TrFE)/perovskite hybrid film provides a stronger built‐in electric field to facilitate the separation and transportation of photogenerated carriers. These findings provide a new route to design self‐powered photodetectors from the aspect of device structure and carrier transport.  相似文献   

4.
The development of efficient photodetectors (PDs) for ultraviolet (UV) light is of great importance for many applications. In this paper, a novel approach is proposed for boosting the performances of self‐powered PDs. Visible‐blind UV‐A PDs are built by combining a mesoporous TiO2 layer with a Spiro‐OMeTAD layer. The nanostructured heterointerface is engineered by inserting a self‐assembled layer of organic modifiers. By choosing 4‐nitrobenzoic acid (NBA), the responsivity is boosted by 70% compared to the pristine devices. It achieves 64 mA W?1 at 0 V bias, 380 nm, and 1 mW cm?2. The PD displays a very high sensitivity (>104), a fast response time (<3 ms), a high stability, and repeatability. 4‐chlorobenzoic acid, 4‐methoxy benzoic acid, 4‐nitro benzoic acid, and β‐alanine surface modifiers are studied by a combined experimental and theoretical approach. Their dipole moment is calculated. Their presence induces a step in the vacuum energy and the formed dipole field dramatically affects the charge transfer and then the photocurrent/photoresponse of the device. The higher responsivity of the NBA‐modified PD is thus explained by the better and faster electron charge transfer toward the electrical contact on TiO2.  相似文献   

5.
Melamine (Mel) is added illegally to foods and feeds due to its high nitrogen content and high intake, and it causes serious health problems, so it is urgent to build a simple and quick method for detecting Mel in our daily life. In this work, a self‐powered Mel detection method is developed that is based on the newly invented triboelectric nanogenerator (TENG) by using the strong electronegativity property of Mel. In addition, Mel can enhance the electrical output signals of the TENGs by pairing with other triboelectric materials. Thus a high‐sensitive Mel sensor is designed based on polytetrafluoethylene (PTFE) TENG; the output current of TENG increases with the addition of Mel, resulting in largely improved detection limit of Mel with 0.5 ppb and a linear increase range from 1 to 500 ppb. This study not only develops a new type of material for TENG, but also demonstrates an innovative and convenient method for the detection of Mel and other biomaterials.  相似文献   

6.
Transparent ultraviolet (UV) photodetectors are an essential component of next‐generation “see‐through” electronics. However, the current photodetectors often suffer from relatively slow response speeds and high driving voltages. Here, all‐solution‐processed UV photodetectors are reported that are facilely prepared from environmentally friendly and abundant materials. The UV photodetectors are composed of a titanium dioxide thin film as the photosensitive layer sandwiched between two different transparent electrodes to form asymmetric Schottky junctions. The photodetector with high optical transparency can operate at zero bias because of spontaneous separation of photogenerated electron–hole pairs by the built‐in electric field. The resulting self‐powered photodetector displays high sensitivity to broadband UV light (200–400 nm). In particular, an ultrafast response speed up to 44 ns is obtained, representing a significant improvement over those of the conventional transparent photodetectors. Moreover, the photodetector has been successfully applied, for the first time, in a UV communication system as the self‐powered signal receiver. This work uniquely combines the features of high optical transparency and self‐power ability into UV photodetectors and would enable a broad range of optoelectronic applications.  相似文献   

7.
Transparent and flexible photodetectors hold great promise in next‐generation portable and wearable optoelectronic devices. However, most of the previously reported devices need an external energy power source to drive its operation or require complex fabrication processes. Herein, designed is a semitransparent, flexible, and self‐powered photodetector based on the integrated ferroelectric poly(vinylidene‐fluoride‐trifluoroethylene) (P(VDF‐TrFE)) and perovskite nanowire arrays on the flexible polyethylene naphthalate substrate via a facile imprinting method. Through optimizing the treatment conditions, including polarization voltage, polarization time, and the concentration of P(VDF‐TrFE), the resulting device exhibits remarkable detectivity (7.3 × 1012 Jones), fast response time (88/154 µs) at zero bias, as well as outstanding mechanical stability. The excellent performance is attributed to the efficient charge separation and transport originating from the highly oriented 1D transport pathway and the polarization‐induced internal electric field within P(VDF‐TrFE)/perovskite hybrid nanowire arrays.  相似文献   

8.
A series of high quality NixMg1‐xO bowl‐shaped array films are successfully prepared by a simple one‐step assembly of polystyrene colloidal spheres and metal oxide precursors at oil–water interface, and further used to fabricate nanodevices. The doping of Mg2+ can greatly enhance the current and spectrum responsivity of NiO film‐based nanodevice. The maximum Rλ value of these bowl‐shaped NixMg1‐xO film‐based devices measured in the study shows 4–5 orders of enhancement than the previously reported NixMg1‐xO film at equal doping.  相似文献   

9.
The integration of colloidal nanocrystals with polymers adds optoelectronic functionalities to flexible and mechanically robust organic films. In particular, self‐assembled structures of nanocrystals in polymers can act as functional components enhancing, for instance, transport or optical properties of the hybrid material. This study presents Cu2Te hexagonal nanodisks that assemble into ribbons with a face‐to‐face configuration in poly(3‐hexylthiophene‐2,5‐diyl) through a controlled solvent evaporation process. The ribbons form weaving patterns that create 3D networks fully embedded in the thin polymer film at high nanodisk concentration. The photoresponse of these composite films measured in a layered vertical geometry demonstrates increased photocurrent with increasing nanocrystal loading. This study attributes this behavior to the presence of networks of Cu2Te nanodisks that form a bulk heterojunction with the semiconducting polymer, which improves exciton dissociation and the overall photoelectric response.  相似文献   

10.
Novel inorganic/organic self‐powered UV–vis photodetectors based on single Se microtube and conducting polymers—polyaniline (PANI), polypyrrole (PPy), and poly(3,4‐ethylenedioxythiophene) (PEDOT)—are fabricated. The conducting polymers are directly coated on the surface of a single Se microtube via a facile and low‐cost in situ polymerization method. The integrated Se/PANI photodetector with 45‐nm‐thick PANI layer shows excellent self‐powered behavior under UV–vis light illumination. In particular, it exhibits high on/off ratio of 1.1 × 103, responsivity (120 mA W?1), large detectivity (3.78 × 1011 Jones), and ultrafast response speed (rise time of 4.5 µs and fall time of 2.84 ms) at zero bias at 610 nm (0.434 mW cm?2)‐light illumination. Moreover, the individual Se/PPy and Se/PEDOT self‐powered photodetectors also exhibit fast and stable responses, including responsivity of 70 and 5.5 mA W?1, rise time of 0.35 and 1.00 ms, fall time of 16.97 and 9.78 ms, respectively. Given the simple device architecture and low cost fabrication process, this work provides a promising way to fabricate inorganic/organic, high‐performance, self‐powered photodetectors.  相似文献   

11.
The rapid development of electrical skin and wearable electronics raises the requirement of stretchable strain sensors. In this study, an active fiber‐based strain sensor (AFSS) is fabricated by coiling a fiber‐based generator around a stretchable silicone fiber. The AFSS shows the sensitive and stable performance and has the ability to detect the strain up to 25%, which is also demonstrated to detect finger motion states. It may play an essential role in future self‐powered sensor system.  相似文献   

12.
Perovskite photodetectors have attracted intensive research interest due to promising applications in sensing, communication, and imaging. However, their performance is restricted by the narrow spectrum range, required power source, and instability in ambient environment. To address these issues, a self‐powered photodetector based on the inorganic CsPbBr3 perovskite nanowire array/conjugated‐polymer hybrid structure is designed. The spectra response range of the device can be extended to 950 nm, along with outstanding stability, fast response speed (111/306 µs), and large detectivity (1.2 × 1013 Jones). The performance parameters are comparable to or even better than most reported CsPbBr3 and conjugated‐polymer photodetectors. The excellent performance is mainly attributed to the efficient carrier generation, separation, and transport resulting from array structure and favorable band structure.  相似文献   

13.
Heavy metals contained in wastewater are one of the most serious pollutions in natural resources. A self‐powered electrochemical recovery system for collecting Cu ions in wastewater by incorporating a rolling friction enhanced freestanding triboelectric nanogenerator (RF‐TENG) is developed here. The RF‐TENG utilizes integrated cylindrical surfaces using the conjunction of rolling electrification and freestanding electrostatic induction, which shows outstanding output performance and ultrarobust stability. By using the kinetic energy of flowing water, a collection efficiency of up to 80% for Cu2+ ions in wastewater has been achieved. Self‐powered electrochemical systems are one of the most promising applications of TENGs for independent and sustainable driving of electrochemical reactions without the need for any additional power supply. This research is a substantial advancement towards the practical applications of triboelectric nanogenerators and self‐powered electrochemical systems.  相似文献   

14.
Enhancing interfacial charge transfer by the inner electric field is crucial for improving photovoltaic performance of heterojunction solar cells. Recent studies are focusing on how to utilize piezo‐phototronic effect (strain‐induced inner electric field) to modulate the interfacial charge transfer, whereas the preservation of solar cells from structure damage and performance decline under long‐term strain becomes increasingly challenging. Here, without use of strain, a thermo‐phototronic effect is presented to enhance the interfacial charge transfer in InP/ZnO nanorod heterojunction solar cells. Under a temperature gradient of 3.5 °C across the device, the output current and voltage of the solar cell under weak light illumination are enhanced by 27.3 and 76%, respectively. Moreover, the performance enhancement can be further regulated by applying different temperature gradients. This study serves as proof‐of‐principle for the thermo‐phototronic effect and pushes forward the maximum utilization of solar energy by a one‐circuit‐based photovoltaic‐thermoelectric system.  相似文献   

15.
A self‐powered, piezotronic effect‐enhanced glucose sensor based on metal‐semiconductor‐metal (M–S–M) structured single ZnO nanowire device is demonstrated. A triboelectrical nanogenerator (TENG) is integrated to build a self‐powered glucose monitoring system (GMS) to realize the continuously monitoring of glucose concentrations. The performance of the glucose sensor is generally enhanced by the piezotronic effect when applying a –0.79% compressive strain on the device, and magnitude of the output signal is increased by more than 200%; the sensing resolution and sensitivity of sensors are improved by more than 200% and 300%, respectively. A theoretical model using energy band diagram is proposed to explain the observed results. This work demonstrates a promising approach to raise the sensitivity, improve the sensing resolution, and generally enhance the performance of glucose sensors, also providing a possible way to build up a self‐powered GMS.  相似文献   

16.
Tribotronics has attracted great attention as a new research field that encompasses the control and tuning of semiconductor transport by triboelectricity. Here, tribotronics is reviewed in terms of active mechanosensation and human–machine interfacing. As a fundamental unit, contact electrification field‐effect transistors are analyzed, in which the triboelectric potential can be used to control electrical transport in semiconductors. Several tribotronic functional devices have been developed for active control and information sensing, which has demonstrated triboelectricity‐controlled electronics and established active mechanosensation for the external environment. In addition, the universal triboelectric power management strategy and the triboelectric nanogenerator‐based constant sources are also reviewed, in which triboelectricity can be managed by electronics in the reverse action. With the implantation of triboelectric power management modules, the harvested triboelectricity by various kinds of human kinetic and environmental mechanical energy can be effectively managed as a power supply for self‐powered microsystems. In terms of the research prospects for interactions between triboelectricity and semiconductors, tribotronics is expected to demonstrate significant impact and potential applications in micro‐electro‐mechanical systems/nano‐electro‐mechanical systems (MEMS/NEMS), flexible electronics, robotics, wireless sensor network, and Internet of Things.  相似文献   

17.
A novel inorganic–organic heterojunction (TiO2/P3HT (poly(3‐hexylthiophene)) is easily prepared by a combination of anodization and vacuumed dip‐coating methods, and the constructed flexible fibrous photodetector (FPD) exhibits high‐performance self‐powered UV–visible broadband photoresponse with fast speed, high responsivity, and good stability, as well as highly stable performance at bending states, showing great potential for wearable electronic devices. Moreover, Au nanoparticles are deposited to further boost the responsivity and selectivity by regulating the sputtering intervals. The optimal Au/TiO2/P3HT FPD yields an ≈700% responsivity enhancement at 0 V under 350 nm illumination. The sharp cut‐off edge and high UV–visible rejection ratio (≈17 times higher) indicate a self‐powered flexible UV photodetector. This work provides an effective and versatile route to modulate the photoelectric performance of flexible electronic devices.  相似文献   

18.
A self‐powered, sliding electrification based quasi‐static triboelectric sensor (QS‐TES) for detecting angle from rotating motion is reported. This innovative, cost‐effective, simply‐designed QS‐TES has a two‐dimensional planar structure, which consists of a rotator coated with four channel coded Cu foil material and a stator with a fluorinated ethylenepropylene film. On the basis of coupling effect between triboelectrification and electrostatic induction, the sensor generates electric output signals in response to mechanical rotating motion of an object mounted with the sensor. The sensor can read and remember the absolute angular position, angular velocity, and acceleration regardless being continuously monitored or segmented monitored. Under the rotation speed of 100 r min?1, the output voltage of the sensor reaches as high as 60 V. Given a relatively low threshold voltage of ±0.5 V for data processing, the robustness of the device is guaranteed. The resolution of the sensor is 22.5° and can be further improved by increasing the number of channels. Triggered by the output voltage signal, the rotating characteristics of the steering wheel can be real‐time monitored and mapped by being mounted to QS‐TES. This work not only demonstrates a new principle in the field of angular measurement but also greatly expands the applicability of triboelectric nanogenerator as self‐powered sensors.  相似文献   

19.
The advancement of electronic skin envisions novel multifunctional human machine interfaces. Although motion sensing by detecting contact locations is popular and widely used in state‐of‐the‐art flexible electronics, noncontact localization exerts fascinations with unique interacting experiences. This paper presents a self‐powered noncontact electronic skin capable of detecting the motion of a surface electrified object across the plane parallel to that of the electronic skin based on electrostatic induction and triboelectric effects. The displacement of the object is calculated under the system of polar coordinates, with a resolution of 1.5 mm in the lengthwise direction and 0.76° in the angular direction. It can serve as a human machine interface due to its ability to sense noncontact motions. An additional self‐powered feature, enabled by its physical principles, solves the problem of power supply. This electronic skin consists of trilayers of polyethyleneterephthalate–indium tin oxide–polydimethylsiloxane (PDMS) films, and microstructured PDMS as the electrified layer, which can be achieved through simplified, low cost, and scalable fabrication. Transparency, flexibility, and less number of electrodes enable such electronic skin to be easily integrated into portable electronic devices, such as laptops, smart phones, healthcare devices, etc.  相似文献   

20.
It is demonstrated that electric transport in Bi‐deficient Bi1‐δFeO3 ferroelectric thin films, which act as a p‐type semiconductor, can be continuously and reversibly controlled by manipulating ferroelectric domains. Ferroelectric domain configuration is modified by applying a weak voltage stress to Pt/Bi1‐δFeO3/SrRuO3 thin‐film capacitors. This results in diode behavior in macroscopic charge‐transport properties as well as shrinkage of polarization‐voltage hysteresis loops. The forward current density depends on the voltage stress time controlling the domain configuration in the Bi1‐δFeO3 film. Piezoresponse force microscopy shows that the density of head‐to‐head/tail‐to‐tail unpenetrating local domains created by the voltage stress is directly related to the continuous modification of the charge transport and the diode effect. The control of charge transport is discussed in conjunction with polarization‐dependent interfacial barriers and charge trapping at the non‐neutral domain walls of unpenetrating tail‐to‐tail domains. Because domain walls in Bi1‐δFeO3 act as local conducting paths for charge transport, the domain‐wall‐mediated charge transport can be extended to ferroelectric resistive nonvolatile memories and nanochannel field‐effect transistors with high performances conceptually.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号