首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heterogeneous structures in nacre‐mimetic 2D layered materials generate novel transport phenomena in angstrom range, and thus provide new possibilities for innovative applications for sustainable energy, a clean environment, and human healthcare. In the two orthogonal transport directions, either vertical or horizontal, heterostructures in horizontal direction have never been reported before. Here, a 2D‐material‐based laterally heterogeneous membrane is fabricated via an unconventional dual‐flow filtration method. Negatively and positively charged graphene oxide multilayers are laterally patterned and interconnected in a planar configuration. Upon visible light illumination on the bipolar nanofluidic heterojunction, protons are able to move uphill against their concentration gradient, functioning as a light‐harvesting proton pump. A maximum proton concentration gradient of about 5.4 pH units mm?2 membrane area can be established at a transport rate up to 14.8 mol h?1 m?2. The transport mechanism can be understood as a light‐triggered asymmetric polarization in surface potential and the consequent change in proton capacity in separate parts. The implementation of photonic–ionic conversion with abiotic materials provides a full‐solid‐state solution for bionic vision and artificial photosynthesis. There is plenty of room to expect the laterally heterogeneous membranes for new functions and better performance in the abundant family of liquid processable colloidal 2D materials.  相似文献   

2.
Controlled ion transport through ion channels of cell membranes regulates signal transduction processes in biological systems and has also inspired the thriving development of ionic electronics (ionotronics or iontronics) and biocomputing. However, for constructing highly integrated ionic electronic circuits, the integration of natural membrane‐spanning ion channel proteins or artificial nanomembrane‐based ionic diodes into planar chips is still challenging due to the vertically arranged architecture of conventional nanomembrane‐based artificial ionic diodes. Here, a new design of ionic diode is reported, which allows chip‐scale integration of ionotronics, based on horizontally aligned nanochannels made from multiwalled carbon nanotubes (MWCNTs). The rectification of ion transport through the MWCNT nanochannels is enabled by decoration of oppositely charged polyelectrolytes on the channel entrances. Advanced ionic electronic circuits including ionic logic gates, ionic current rectifiers, and ionic bipolar junction transistors (IBJT) are demonstrated on planar nanofluidic chips by stacking a series of ionic diodes fabricated from the same bundles of MWCNTs. The horizontal arrangement and facile chip‐scale fabrication of the MWCNT ionic diodes may enable new designs of complex but monolithic ionotronic systems. The MWCNT ionic diode may also prove to be an excellent platform for investigation of electrokinetic ion transport in 1D carbon materials.  相似文献   

3.
In nature, hierarchically assembled nanoscale ionic conductors, such as ion channels and ion pumps, become the structural and functional basis of bioelectric phenomena. Recently, ion‐channel‐mimetic nanofluidic systems have been built into reconstructed 2D nanomaterials for energy conversion and storage as effective as the electrogenic cells. Here, a 2D‐material‐based nanofluidic reverse electrodialysis system, containing cascading lamellar nanochannels in oppositely charged graphene oxide membrane (GOM) pairs, is reported for efficient osmotic energy conversion. Through preassembly modification, the surface charge polarity of the 2D nanochannels can be efficiently tuned from negative (?123 mC m?2) to positive (+147 mC m?2), yielding strongly cation‐ or anion‐selective GOMs. The complementary two‐way ion diffusion leads to an efficient charge separation process, creating superposed electrochemical potential difference and ionic flux. An output power density of 0.77 W m?2 is achieved by controlled mixing concentrated (0.5 m ) and diluted ionic solutions (0.01 m ), which is about 54% higher than using commercial ion exchange membranes. Tandem alternating GOM pairs produce high voltage up to 2.7 V to power electronic devices. Besides simple salt solutions, various complex electrolyte solutions can be used as energy sources. These findings provide insights to construct cascading nanofluidic circuits for energy, environmental, and healthcare applications.  相似文献   

4.
Recent advances in materials science and nanotechnology have lead to considerable interest in constructing ion‐channel‐mimetic nanofluidic systems for energy conversion and storage. The conventional viewpoint suggests that to gain high electrical energy, the longitudinal dimension of the nanochannels (L) should be reduced so as to bring down the resistance for ion transport and provide high ionic flux. Here, counterintuitive channel‐length dependence is described in nanofluidic osmotic power generation. For short nanochannels (with length L < 400 nm), the converted electric power persistently decreases with the decreasing channel length, showing an anomalous, non‐Ohmic response. The combined thermodynamic analysis and numerical simulation prove that the excessively short channel length impairs the charge selectivity of the nanofluidic channels and induces strong ion concentration polarization. These two factors eventually undermine the osmotic power generation and its energy conversion efficiency. Therefore, the optimal channel length should be between 400 and 1000 nm in order to maximize the electric power, while balancing the efficiency. These findings reveal the importance of a long‐overlooked element, the channel length, in nanofluidic energy conversion and provide guidance to the design of high‐performance nanofluidic energy devices.  相似文献   

5.
Bio‐inspired nanochannels have emerged as an interface to mimic the functionalities of biological nanochannels. One remaining challenge is to develop double‐gated nanochannels with dual response, which can regulate the ion transport direction by alternately opening and closing the two gates. In this work, a bio‐inspired potassium and pH responsive double‐gated nanosystem is presented, constructed through immobilizing C‐quadruplex and G‐quadruplex DNA molecules onto the top and bottom tip side of a cigar‐shaped nanochannel, respectively. It is demonstrated that the two gates of the nanochannel can be opened and closed alternately/simultaneously. This phenomenon results from the attached DNA conformational transition caused by adjusting the concentrations of potassium ion and proton. This design is believed to be the first example of dual‐responsive double‐gated nanosystem, and paves a new way to investigate more intelligent bio‐inspired nanofluidic system.  相似文献   

6.
Biomimetic smart nanochannels can regulate ion transport behavior responsive to the external stimuli, having huge potential in nanofluidic devices, sensors and energy conversion. Field-effect nanofluidic diodes or transistors based on electric-responsive nanochannels are emerging owing to their advantages such as non-invasiveness, in situ, real time, and high efficiency. However, simultaneously realizing the voltage-control of the ion conductance and ion current rectification (ICR) properties is still a big challenge. Here, a field-effect iontronic device is developed based on ionomer/anodic aluminum oxide/conducting polymer sandwich-structured nanochannel to realize the multi-control of ion transport behaviors including ion conductance, ICR magnitude, and ICR direction by modulating the surface charge, wettability, and morphology of the nanochannel. The electroactive conducting polymer carries tunable surface charges responsive to the electric stimuli, leading to the regulation of ICR values. The complex three-segment structures lead to the reverse of ICR direction by reconfiguring the charge distribution along with the whole channel. The switching wettability between hydrophilic and hydrophobic results in the regulation of ion conductance. Furthermore, the field-effect iontronic device functions in a wide salinity range especially in hypersaline environment, due to the salinity-adaptive properties of the membrane. A new route is provided for designing more functional field-effect nanofluidic devices.  相似文献   

7.
4‐oxo‐4‐(pyren‐4‐ylmethoxy) butanoic acid is used as a photolabile protecting group to show the optical gating of nanofluidic devices based on synthetic ion channels. The inner surface of the channels is decorated with monolayers of photolabile hydrophobic molecules that can be removed by irradiation, which leads to the generation of hydrophilic groups. This process can be exploited in the UV‐light‐triggered permselective transport of ionic species in aqueous solution through the channels. The optical gating of a single conical nanochannel and multichannel polymeric membranes is characterised experimentally and theoretically by means of current–voltage and selective permeation measurements, respectively. It is anticipated that the integration of nanostructures into multifunctional devices is feasible and can readily find applications in light‐induced controlled release, sensing, and information processing.  相似文献   

8.
The biochemical oscillatory reaction induced self‐gating process of biological ion channels is essential to life processes, characterized as autonomous, continuous, and periodic. However, few synthetic nanochannel systems can achieve such excellent self‐gating property. Their gating properties work greatly depending on the frequent addition of reactants or the supply of external stimuli. Herein, a novel bioinspired self‐gating nanofluidic device that can transport mass in a continuous and periodic manner is reported. This self‐gating device is constructed by using a fully closed‐system pH oscillator to control the gating processes of the artificial proton‐gated nanochannels. With cyclic oscillation of protons inside the nanochannel induced by the oscillatory chemical reactions of the pH oscillator, surface charge density and polarity of the nanochannels can be self‐regulated, resulting in an autonomous and periodic switching of the nanochannel conductance between high and low states as well as the selectivity between cation selective and anion selective states. Moreover, by using Rhodamine B and Ruthenium(II) compound as the cationic cargoes, periodic release of these charged molecules is also observed. Therefore, this work opens up a new avenue to build self‐gating nanofluidic devices, which may not only act as ion oscillators, but potentially find applications in controlled‐release fields as well.  相似文献   

9.
The emergence of lamellar nanofluidic membranes offers feasible routes for developing highly efficient, mechanically robust, and large-scale devices for osmotic energy harvesting. However, inferior ion permeability associated with their relatively long channels limits ionic flux and restricts their output performance. Herein, a superstructured graphene oxide membrane is developed to allow programmable topological variation in local geometry and contain laminar spaces inside. Such deliberate design offers excess specific area as well as nanofluidic channels to modulate transmembrane ionic transportation while concomitantly retaining similar nanoconfined environment in contrast to planar ones, leading to considerable enhancement of ionic permeability without compromising selectivity. This can be highly favorable in terms of osmotic energy harvesting, where the superstructured membranes offer a power output much higher than those of conventional planar ones. Besides, the superstructure design also endows the resulting membranes with benign biofouling resistance, which can be crucial to their long-term usage in converting osmotic energy. This study highlights the importance of membrane topographies and presents a general design concept that could be extended to other nanoporous membranes to develop high-performance nanofluidic devices.  相似文献   

10.
Graphene‐based organic nanocomposites have ascended as promising candidates for thermoelectric energy conversion. In order to adopt existing scalable printing methods for developing thermostable graphene‐based thermoelectric devices, optimization of both the material ink and the thermoelectric properties of the resulting films are required. Here, inkjet‐printed large‐area flexible graphene thin films with outstanding thermoelectric properties are reported. The thermal and electronic transport properties of the films reveal the so‐called phonon‐glass electron‐crystal character (i.e., electrical transport behavior akin to that of few‐layer graphene flakes with quenched thermal transport arising from the disordered nanoporous structure). As a result, the all‐graphene films show a room‐temperature thermoelectric power factor of 18.7 µW m?1 K?2, representing over a threefold improvement to previous solution‐processed all‐graphene structures. The demonstration of inkjet‐printed thermoelectric devices underscores the potential for future flexible, scalable, and low‐cost thermoelectric applications, such as harvesting energy from body heat in wearable applications.  相似文献   

11.
Recently emerged ionic thermoelectric conversion with the Soret effect is advantageous in providing large thermopower on the order of ≈ 1–10 mV K−1, but the origin of the large thermopower and the methodology of attaining superior thermoelectric performances are yet to be disclosed. Here, key parameters and their optimization for outstanding thermoelectric responses with polystyrene sulfonic acid (PSS-H) are unveiled. It is found that the thermo-diffusion of water boosts proton transport, playing a key role in obtaining large ionic thermopower by promoting unidirectional migration of protons from a hotter to colder side. When graphene oxide (GO) embedded in PSS-H is aligned along the transport direction of protons and water, their diffusion along the in-plane direction of GO is promoted, enlarging both ionic thermopower and ionic electrical conductivity. PSS-H containing 3 wt% GO possesses extremely large ionic power factors up to 1.8 mW m−1 K−2 and ionic figure-of-merits up to 0.85 at 23 ° C. This study provides not only preeminent thermoelectric performances based on ion transport but also identifies the influence of the key parameters on thermoelectric properties, suggesting controllability of thermo-diffusion of ions depending on inclusions in base materials, which will draw numerous subsequent research with their alterations.  相似文献   

12.
A novel method for the electrochemical dissolution of polyelectrolyte multilayers from the surface of an electrode for applications in controlled drug delivery is reported. Biodegradable and biocompatible multilayer films based on poly(L ‐lysine) and heparin have been selected as a model system, and have been built on an indium tin oxide semiconductor substrate. The build‐up and dissolution processes of the multilayers is followed by electrochemical optical waveguide light mode spectroscopy. The formation and stability of the polyelectrolyte multilayers have been found to depend on the applied potential and the ionic strength of the buffer. The application of potentials above a threshold of 1.8 V induces dissolution, which follows single‐exponential kinetics, of the polyelectrolyte multilayer film. The rate of this process can be varied by an on–off profile of the potential, leading to the controlled release of heparin into the bulk. Atomic force microscopy investigations show that the electrodissolution of the polyelectrolyte multilayers is a local phenomenon that leads to the formation of nanoporous films.  相似文献   

13.
Simultaneous manipulation of topological and chemical structures to induce ionic nanochannel formation within solid electrolytes is a crucial but challenging task for the rational design of high‐performance electrochemical devices including proton exchange membrane fuel cell. Herein, a novel generic approach is presented for the construction of tunable ion‐conducting nanochannels via direct assembly of graphene oxide (GO)/poly(phosphonic acid) core–shell nanosheets prepared by surface‐initiated precipitation polymerization. Using this simple and rapid approach to engineer GO/polymer nanosheets at the molecular‐level, ordered and continuous nanochannels with interconnected hydrogen‐bonded networks having a favorable water environment can be created. The resulting membranes exhibit proton conductivities up to 32 mS cm?1 at 51% relative humidity, surpassing state‐of‐the‐art Nafion membrane and all previously reported GO‐based materials.  相似文献   

14.
Inspired by living systems that have the inherent skill to convert solar energy into bioelectric signals with their light‐driven cross‐membrane proton pump, a photoelectric conversion system that can work in alkaline conditions based on photoinduced reversible pH changes by malachite green carbinol base and a smart gating hydroxide ion‐driven nanofluidic channel is demonstrated. In this system, solar energy can be considered as the only source of cross‐membrane proton motive force that induces diffusion potential and photocurrent flowing through the external circuit. The conversion performances are 0.00825% and 36%, which are calculated from the photoelectric conversion and Gibbs free energy diffusion, respectively. The results suggest that electric power generation and performance could be further optimized by selecting appropriate photosensitized molecules and enhancing the surface‐charge density as well as adopting the appropriate channel size. This facile, cost‐efficient, and environmentally friendly photoelectric conversion system has potential applications for future energy demands such as production of power for in vivo medical devices.  相似文献   

15.
2D nanofluidic membranes are capable of regulating ion transport toward various applications concerning energy and environment, which is primarily contributed by the excess charge on the interior surface of narrow nanoscale pores. However, there is still a lack of comprehensive summaries and discussions on the surface charge modification principles and strategies of 2D nanofluidic membranes, as well as the practical applications of charge-modified 2D nanofluidic membranes for regulating ion transport. In this review, the surface charge modification principles and charge modification methods of 2D nanofluidic membranes are first introduced in detail, which is of great significance for improving the ion regulation capability of membranes and realizing the design of nanochannel materials. Next, recent advances in the two typical applications of concentration cells and water treatment based on charge-modified 2D nanofluidic membranes are summarized. Finally, some challenges and prospects related to charge-modified 2D nanofluidic membranes are discussed to indicate directions for future research in this field. It is anticipated that this review will provide valuable strategies for the development of high-performance charge-modified 2D nanofluidic membranes toward energy and environment applications.  相似文献   

16.
Biological wonders, found in insects such as antireflecting moth eyes, compound eyes in a honey bee, firefly lanterns, and iridescent butterfly wings, inspire human beings for advanced light imaging and illumination technologies. Dazzling advances of micro‐ and nanofabrication technologies allow insect‐inspired structures, for example, artificial compound eyes with a wide field of view and low aberration, bioinspired light‐emitting diode lenses, and structural coloration templates, featuring miniaturization. Besides, plasmonics and metamaterials offer an unprecedented approach that overcomes the diffraction limit and unveils unknown optical phenomena in ultrastructures inspired by insects. Here, insect‐inspired photonic structures for light imaging, light extraction, and structural coloration are reviewed, and photonic functions and structure fabrications inspired by insects that can be applied in advanced imaging and illumination applications are discussed.  相似文献   

17.
Nanopores in ultrathin or atomically thin membranes attract broad interest because the infinitesimal pore depth allows selective transport of ions and molecules with ultimate permeability. Toward large‐scale osmotic energy conversion, great challenges remain in extrapolating the promising single‐pore demonstration to really powerful macroscopic applications. Herein, the origin of the selective ion transport in ultrathin nanopores is systematically investigated. Based on a precise Poisson and Nernst–Planck model calculation, it is found that the generation of net diffusion current and membrane potential stems from the charge separation within the electric double layer on the outer membrane surface, rather than that on the inner pore wall. To keep the charge selectivity of the entire membrane, a critical surface charged area surrounding each pore orifice is therefore highly demanded. Otherwise, at high pore density, the membrane selectivity and the overall power density would fall down instead, which explains the giant gap between the actual experimental achievements and the single‐pore estimation. To maximize the power generation, smaller nanopores (pore diameter ≈1–2 nm) are appropriate for large‐scale osmotic energy conversion. With a porosity of ≈10%, the total power density approaches more than 200 W m‐2, anticipating a substantial advance toward high‐performance large‐scale nanofluidic power sources.  相似文献   

18.
Building nanocomposite architectures based on nanocarbon materials (such as carbon nanotubes and graphene nanosheets) and metal‐oxide nanoparticles is of great interests for electrochemical energy storage. Here, an ionic‐liquid‐assisted strategy is presented to mediate the in situ growth of TiO2 nanocrystals with controlled size on carbon nanotubes and graphene, and also reduce the modified carbon supports to recover the graphitic structure simultaneously. The as‐prepared nanocomposites exhibit a highly porous and robust structure with intimate coupling between TiO2 nanocrystals and carbon supports, which offers facile ion and electron transport pathway as well as high mechanical stability. When evaluated as electrode materials for lithium‐ion batteries, the nanocomposites manifest high specific capacity, long cycling lifetime, and excellent rate capability, showing their promising application in high‐performance energy storage devices.  相似文献   

19.
Energy harvesting from sunlight is essential in order to save fossil fuels, which are found in limited amount in the earth's crust. Photovoltaic devices converting light into electrical energy are presently made of semiconducting materials, but ferroelectrics are also natural candidates because of their internal built‐in electric field. Although they are clearly uncompetitive for mainstream applications, the possibility to output high photovoltages is making these materials reconsidered for targeted applications. However, their intrinsic properties regarding electronic transport and the origin of their internal field are poorly known. Here, it is demonstrated that under intense illumination and electric field, oxygen vacancies can be controllably generated in BiFeO3 to dramatically increase the conductance of BiFeO3 single crystals to a controllable value spanning 6 orders of magnitude while at the same time triggering light sensitivity in the form of photoconductivity, diode, and photovoltaic effects. Properties of the bulk and the Schottky interfaces with gold contacts are disentangled and it is shown that bulk effects are time dependent. The photocurrent has a direction that can be set by an applied field without changing the ferroelectric polarization direction. The self‐doping procedure is found to be essential in both the generation of electron hole pairs and the establishment of the internal field that separates them.  相似文献   

20.
Electrically insulating graphene oxide with various oxygen‐functional groups is a novel material as an active layer in resistive switching memories via reduction process. Although many research groups have reported on graphene oxide‐based resistive switching memories, revealing the origin of conducting path in a graphene oxide active layer remains a critical challenge. Here nanoscale conductive graphitic channels within graphene oxide films are reported using a low‐voltage spherical‐aberration‐corrected transmission electron microscopy. Simultaneously, these channels with reduced graphene oxide nanosheets induced by the detachment of oxygen groups are verified by Raman intensity ratio map and conductive atomic force microscopy. It is also clearly revealed that Al metallic protrusions, which are generated in the bottom interface layer, assist the local formation of conductive graphitic channels directly onto graphene oxide films by generating a local strong electric field. This work provides essential information for future carbon‐based nanoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号