首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potassium-ion batteries (KIBs) are considered as the potential energy storage devices due to the abundant reserves and low cost of potassium. In the past decade, research on KIBs has generally focused on electrode materials. However, since electrolytes also play a key role in determining the cell performance, this review summarizes recent advances in KIB electrolytes and design strategies. Specifically, the review includes five parts. First, the organic liquid electrolyte is the most widely used type for KIBs. Its two major components, salts and solvents, have a huge impact on the formation of the solid electrolyte interphase and the performance of KIBs. Changes in salts/solvents, the introduction of additives, and the concentration increase all have a positive effect on organic liquid electrolytes. Second, the design of water-in-salt electrolytes can effectively widen the narrow electrochemical stability window of aqueous electrolytes. Third, despite the appealing properties, the ionic liquid electrolytes have not been widely applied due to its high cost. Fourth, the solid-state electrolytes have drawn much attention due to high safety, and current research has been working on improving their ionic conductivity at room temperature. Lastly, perspectives are provided to support the future development of suitable electrolytes for high-performance KIBs.  相似文献   

2.
The emerging electrochemical energy storage systems beyond Li‐ion batteries, including Na/K/Mg/Ca/Zn/Al‐ion batteries, attract extensive interest as the development of Li‐ion batteries is seriously hindered by the scarce lithium resources. During the past years, large amounts of studies have focused on the investigation of various electrode materials toward emerging metal‐ion batteries to realize high energy density, high power density, and a long cycle life. In particular, vanadium‐based nanomaterials have received great attention. Vanadium‐based compounds have a big family with different structures, chemical compositions, and electrochemical properties, which provide huge possibilities for the development of emerging electrochemical energy storage. In this review, a comprehensive overview of the recent progresses of promising vanadium‐based nanomaterials for emerging metal‐ion batteries is presented. The vanadium‐based materials are classified into four groups: vanadium oxides, vanadates, vanadium phosphates, and oxygen‐free vanadium‐based compounds. The structures, electrochemical properties, and modification strategies are discussed. The structure–performance relationships and charge storage mechanisms are focused on. Finally, the perspectives about future directions of vanadium‐based nanomaterials for emerging energy storage devices are proposed. This review will provide comprehensive knowledge of vanadium‐based nanomaterials and shed light on their potential applications in emerging energy storage.  相似文献   

3.
Lithium‐ion batteries are widely used as reliable electrochemical energy storage devices due to their high energy density and excellent cycling performance. The search for anode materials with excellent electrochemical performances remains critical to the further development of lithium‐ion batteries. Tungsten‐based materials are receiving considerable attention as promising anode materials for lithium‐ion batteries owing to their high intrinsic density and rich framework diversity. This review describes the advances of exploratory research on tungsten‐based materials (tungsten oxide, tungsten sulfide, tungsten diselenide, and their composites) in lithium‐ion batteries, including synthesis methods, microstructures, and electrochemical performance. Some personal prospects for the further development of this field are also proposed.  相似文献   

4.
With the constant focus on energy storage devices, layered materials are ideal electrodes for the new generation of highly efficient secondary ion batteries and supercapacitors due to their flexible 2D structures and high theoretical capacities. However, the small interlayer distances in layered electrode materials and the strong Columbic interactions between the working ions and host lattice anions cause slow ion diffusion. In addition, structural collapse during repeated ion insertion and extraction reduces the cycling lifetime. As such, interlayer engineering strategies are effective approaches to optimize ion transmission kinetics and structural integrity. In view of the latest research on the interlayer engineering of layered materials, this review will discuss useful strategies to improve electrode performance. The synthetic strategies, characterization techniques, and effects of interlayer-engineered layered materials, including metal oxides, metal sulfides, carbonous materials, and MXenes, are discussed in detail. The future outlook and challenges for interlayer engineering are also presented, which may pave the way for the development of new layered materials.  相似文献   

5.
High‐energy Li‐S batteries have received extensive attention and are considered to be the most promising next‐generation electric energy storage devices beyond Li‐ion batteries. Interface design is an important direction to address challenges in the development of Li–S batteries. This review summarizes recently developed coatings and interlayer materials at various interfaces of Li–S batteries. In particular, advanced nanostructures and novel fabrication methods of coating and interlayer materials applied to Li–S batteries are highlighted. Furthermore, underlying mechanisms at the interfaces and electrochemical performance of the developed Li–S batteries are also discussed. Finally, existing challenges and the future development of interface design in high‐energy Li–S batteries are summarized and prospected.  相似文献   

6.
Dual-ion batteries (DIBs), based on the working mechanism involving the storage of cations and anions separately in the anode and cathode during the charging/discharging process, are of great interest beyond lithium-ion batteries (LIBs) in high-efficiency energy storage due to the merits of high working voltage, material availability, as well as low cost and excellent safety. Despite the progress achieved, the practical applications of DIBs are still hindered by negative issues, such as limited capacity and cyclic stability, which triggers the development of suitable electrode materials with highly reversible capacities, and corresponding electrolytes with high oxidative stability as well as sufficient reaction kinetics of active ions. Herein, in this article, a systematic and comprehensive review of fundamentals and recent advances in current DIBs with subcategories of cathode materials, anode materials, and electrolytes are presented. In particular, their energy storage mechanisms, as well as their respective features, are dissected. Furthermore, some strategies and perspectives are proposed for facilitating the further development of DIBs in the future.  相似文献   

7.
Developing new electrode materials with a regular channel for stable storage and diffusion of potassium (K) ions is crucial to alleviating the ubiquitous problems in K-ion batteries (KIBs) such as slow diffusion rate, huge volume expansion, and unstable interface by the large K ion radius. Herein, electrode material with a facile diffusion pathway, vast space for volume expansion, and good interfacial compatibility are found to be necessary. Fluoride graphdiyne (F-GDY) is illustrated for its expanded conductive skeleton, uniform structural pores, and well-distributed F atoms. First-principles computations and electrochemical characterizations reveal the high reversible capacity and cyclic stability for the instanced F-GDY electrode through the ultralow diffusion barrier, abundant exposed active sites, and stable KF-enriched solid electrolyte interphase film. The F-GDY anode exhibits a capacity of 320 mAh g−1 at 50 mA g−1, and 120 mAh g−1 at 1000 mA g−1 for 1800 cycles. These electrochemical performances of F-GDY anode are superior than those of many other carbon materials reported to date, providing us with a new insight into the design of an electrode for KIBs.  相似文献   

8.
Halide perovskites, traditionally a solar‐cell material that exhibits superior energy conversion properties, have recently been deployed in energy storage systems such as lithium‐ion batteries and photorechargeable batteries. Here, recent progress in halide perovskite‐based energy storage systems is presented, focusing on halide perovskite lithium‐ion batteries and halide perovskite photorechargeable batteries. Halide‐perovskite‐based supercapacitors and photosupercapacitors are also discussed. The photorechargeable batteries and photorechargeable supercapacitors employ solar energy to photocharge the battery; this saves energy and improves device portability. These lightweight, integrated halide perovskite‐based systems, which are pertinent to electric vehicles and portable electronic devices, are reviewed in detail. Suggestions on future research into the design of halide‐perovskite‐based energy storage materials are also given. This review provides a foundation for the development of integrated lightweight energy conversion and storage materials.  相似文献   

9.
With the rapid growth in energy consumption, renewable energy is a promising solution. However, renewable energy (e.g., wind, solar, and tidal) is discontinuous and irregular by nature, which poses new challenges to the new generation of large-scale energy storage devices. Rechargeable batteries using aqueous electrolyte and multivalent ion charge are considered more suitable candidates compared to lithium-ion and lead-acid batteries, owing to their low cost, ease of manufacture, good safety, and environmentally benign characteristics. However, some substantial challenges hinder the development of aqueous rechargeable multivalent ion batteries (AMVIBs), including the narrow stable electrochemical window of water (≈1.23 V), sluggish ion diffusion kinetics, and stability issues of electrode materials. To address these challenges, a range of encouraging strategies has been developed in recent years, in the aspects of electrolyte optimization, material structure engineering and theoretical investigations. To inspire new research directions, this review focuses on the latest advances in cathode materials for aqueous batteries based on the multivalent ions (Zn2+, Mg2+, Ca2+, Al3+), their common challenges, and promising strategies for improvement. In addition, further suggestions for development directions and a comparison of the different AMVIBs are covered.  相似文献   

10.
Layered crystal materials have blazed a promising trail in the design and optimization of electrodes for magnesium ion batteries (MIBs). The layered crystal materials effectively improve the migration kinetics of the Mg2+ storage process to deliver a high energy and power density. To meet the future demand for high-performance MIBs, significant work has been applied to layered crystal materials, including crystal modification, mechanism investigation, and micro/nanostructure design. Herein, this review presents a comprehensive overview of layered crystal materials applied to MIBs, from development history to current applications. It focuses on the relationship between the layered crystal structure and the energy storage mechanism. Meanwhile, recent achievements in the design principles of layered crystal materials and their application to electrodes are summarized. Finally, future perspectives on the application of layered materials in MIBs are presented. The overview of the development process and structural characteristics contributes to a thorough understanding of these materials, while a discussion of design strategies and practical applications can inspire further research. Therefore, this review provides guidance and assistance for constructing high-performance MIBs.  相似文献   

11.
Rechargeable potassium–selenium (K–Se) batteries, as an emerging electrochemical energy storage system, has recently captured intensive attention due to the desirable natural abundance and low redox potential of elemental potassium as well as the relatively high electronic conductivity and impressive theoretical volumetric capacity of elemental selenium. Although great progress on cathode materials design and electrochemical performance improvement has been made, K–Se batteries are still confronted with a series of key challenges, including low reactive activity, shuttle effect, volume expansion, potassium dendrite growth, and high chemical activity of potassium metal. The recent advances in rechargeable K–Se batteries are comprehensively summarized with an emphasis on discussing the electrochemical mechanisms and central challenges, presenting the synthesis, properties, and electrochemical performance of selenium-based cathode materials, and extending potential tactics for tackling the key issues and developmental directions for future research.  相似文献   

12.
The ever-increasing demands for high energy density electronics have motivated research on exploring new types of electrode materials featuring mechanical flexibility and electrical storage capability. Of these, polymeric carbon nitride (PCN) has been increasingly studied in regard to electrical energy storage (EES) because of its abundant pyridinic N content, which is beneficial for enhancing electrochemical performance. However, state-of-the-art PCN-based electrode materials for EES are still far from industrial requirements. Herein, the current status of PCN-based materials in batteries and supercapacitors (SCs) is primarily discussed. A particular emphasis is placed on the PCN processing into composite electrode materials, including the defect engineering of pristine PCN and its coupling with other conductive materials to develop heterojunction nanostructures, which is essential for developing highly efficient electrode materials. Moreover, the direct pyrolysis of PCN into N-doped graphene with a tunable N content is introduced and achieves remarkable energy storage performance with superior electronic conductivity. Furthermore, the energy storage mechanisms for batteries and SCs are also highlighted to reveal structure–performance relationship. Finally, this comprehensive review outlines the remaining challenges and strategies for future improvements in PCN-based materials in this emerging field. This review will provide inspiration on developing future PCN-based materials for EES.  相似文献   

13.
Lithium‐sulfur (Li‐S) batteries are in the spotlight because their outstanding theoretical specific energy is much higher than those of the commercial lithium ion (Li‐ion) batteries. Li‐S batteries are tough competitors for future‐developing energy storage in the fields of portable electronics and electric vehicles. However, the severe “shuttle effect” of the polysulfides and the serious damage of lithium dendrites are main factors blocking commercial production of Li‐S batteries. Owing to their superior nanostructure, electrospun nanofiber materials commonly show some unique characteristics that can simultaneously resolve these issues. So far, various novel cathodes, separators, and interlayers of electrospun nanofiber materials which are applied to resolve these challenges are researched. This review presents the fundamental research and technological development of multifarious electrospun nanofiber materials for Li‐S cells, including their processing methods, structures, morphology engineering, and electrochemical performance. Not only does the review article contain a summary of electrospun nanofiber materials in Li‐S batteries but also a proposal for designing electrospun nanofiber materials for Li‐S cells. These systematic discussions and proposed directions can enlighten thoughts and offer ways in the reasonable design of electrospun nanofiber materials for excellent Li‐S batteries in the near future.  相似文献   

14.
Layered materials have received extensive attention for widespread applications such as energy storage and conversion, catalysis, and ion transport owing to their fast ion diffusion, exfoliative feature, superior mechanical flexibility, tunable bandgap structure, etc. The presence of large interlayer space between each layer enhances intercalation of the guest ion or molecule, which is beneficial for fast ion diffusion and charge transport along the channels. This intercalation reaction of layered compounds with guest species results in material with improved mechanical and electronic properties for efficient energy storage and conversion, catalysis, ion transport, and other applications. This review extensively discusses the intercalation of guest ionic or molecular species into layered materials used for various types of applications. It assesses the intercalation strategies, mechanism of ionic or molecular intercalation reactions, and highlights recent advancements. The electrochemical performances of several typical intercalated materials in batteries, supercapacitors, and electrocatalytic systems have been thoroughly discussed. Moreover, the challenges in the design and intercalation of layered materials, as well as prospects of future development are highlighted.  相似文献   

15.
The progressive size reduction of electronic components is experiencing bottlenecks in shrinking charge storage devices like batteries and supercapacitors, limiting their development into wearable and flexible zero‐pollution technologies. The inherent long cycle life, rapid charge–discharge patterns, and power density of supercapacitors rank them superior over other energy storage devices. In the modern market of zero‐pollution energy devices, currently the lightweight formula and shape adaptability are trending to meet the current requirement of wearables. Carbon nanomaterials have the potential to meet this demand, as they are the core of active electrode materials for supercapacitors and texturally tailored to demonstrate flexible and stretchable properties. With this perspective, the latest progress in novel materials from conventional carbons to recently developed and emerging nanomaterials toward lightweight stretchable active compounds for flexi‐wearable supercapacitors is presented. In addition, the limitations and challenges in realizing wearable energy storage systems and integrating the future of nanomaterials for efficient wearable technology are provided. Moreover, future perspectives on economically viable materials for wearables are also discussed, which could motivate researchers to pursue fabrication of cheap and efficient flexible nanomaterials for energy storage and pave the way for enabling a wide‐range of material‐based applications.  相似文献   

16.
The rapid growth in electronic and portable devices demands safe, durable, light weight, low cost, high energy, and power density electrode materials for rechargeable batteries. In this context, biomass-based materials and their hybrids are extensively used for energy generation research, which is primarily due to their properties such as large specific surface area, fast ion/electron kinetics, restricted volume expansion, and restrained shuttle effect. In this review, the key advancements in the preparation of biomass derived porous carbons using different synthesis strategies and their modifications with species such as heteroatoms, metal oxides, metal sulfides, silicon, and other carbon forms are discussed. The electrochemical performances of these materials and the ion storage mechanisms in different batteries including lithium-ion, lithium–sulfur, sodium-ion, and potassium-ion batteries are discussed. Special attention will be paid to the challenges in using porous biomass-derived carbons and the current strategies employed for maximizing the specific capacity and lifetime for battery applications. Finally, the drawbacks in current technology and endeavors for the future research and development in the field to catapult the performances of the biomass derived materials in order to equip them to meet the demands of commercialization are highlighted.  相似文献   

17.
Flexible batteries are key component of wearable electronic devices.Based on the requirements of medical and primary safety of wearable energy storage devices,rechargeable aqueous zinc ion batteries (ZIBs) are promising portable candid-ates in virtue of its intrinsic safety,abundant storage and low cost.However,many inherent challenges have greatly hindered the development in flexible Zn-based energy storage devices,such as rigid current collector and/or metal anode,easily de-tached cathode materials and a relatively narrow voltage window of flexible electrolyte.Thus,overcoming these challenges and further developing flexible ZIBs are inevitable and imperative.This review summarizes the most advanced progress in designs and discusses of flexible electrode,electrolyte and the practical application of flexible ZIBs in different environments.We also exhibit the heart of the matter that current flexible ZIBs faces.Finally,some prospective approaches are proposed to ad-dress these key issues and point out the direction for the future development of flexible ZIBs.  相似文献   

18.
Organic cathode materials as economical and environment‐friendly alternatives to inorganic cathode materials have attracted comprehensive attention in potassium‐ion batteries (KIBs). Nonetheless, active material dissolution and mismatched electrolytes result in insufficient cycle life that definitely hinders their practical applications. Here, a significantly improved cycle life of 1000 cycles (80% capacity retention) on a practically insoluble organic cathode material, anthraquinone‐1,5‐disulfonic acid sodium salt, is realized, in KIBs through a solid‐electrolyte interphase (SEI) regulation strategy by ether‐based electrolytes. Such an excellent performance is attributed to the robust SEI film and fast reaction kinetics. More importantly, the ether‐electrolyte‐derived SEI film has a protective inorganic‐rich inner layer arising from the prior decomposition of potassium salts to solvents, as revealed by X‐ray photoelectron spectroscopy analysis and computational studies on molecular orbital energy levels. The findings shed light on the critical roles of electrolytes and the corresponding SEI films in enhancing performance of organic cathodes in KIBs.  相似文献   

19.
Aqueous rechargeable zinc batteries (ARZBs) are recently prevailing devices that utilize the abundant Zn resources and the merits of aqueous electrolytes to become a competitive alternative for large-scale energy storage. Benefiting from the unique inductive effect and flexible structure, the past five years have experienced a diversiform of phosphate-based polyanion materials that are used as cathodes in ARZBs. In this review, the most recent advances in the Zn2+ storage mechanisms and electrolyte optimization of the phosphate-based cathodes of ARZBs, which mainly focus on vanadium/iron-based phosphates and their derivatives are presented. Furthermore, in addition to significant progress on polyanion phosphate-based cathode materials, the design strategies both for electrode materials and compatible electrolytes are also elaborated to improve the energy density and extend the cycling life of aqueous Zn/polyanion batteries.  相似文献   

20.
Complex hydrides have energy storage‐related functions such as i) solid‐state hydrogen storage, ii) electrochemical Li storage, and iii) fast Li‐ and Na‐ionic conductions. Here, recent progress on the development of fast Li‐ionic conductors based on the complex hydrides is reported. The validity of using them as electrolytes in all‐solid‐state lithium rechargeable batteries is also examined. Not only coated oxides but also bare sulfides are found to be applicable as positive electrode active materials. Results related to fast Na‐ionic conductivity in the complex hydrides are presented. In the last section, the future prospects for battery assemblies with high‐energy densities, and Mg ion batteries with the liquid and the solid‐state electrolytes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号