首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, a new route to achieve 100% internal quantum efficiency white organic light‐emitting diodes (WOLEDs) is proposed by utilizing noble‐metal‐free thermally activated delayed fluorescence (TADF) emitters due to the radiative contributions of triplet excitons by effective reverse intersystem crossing. However, a systematic understanding of their reliability and internal degradation mechanisms is still deficient. Here, it demonstrates high performance and operational stable purely organic fluorescent WOLEDs consisting of a TADF assistant host via a strategic exciton management by multi‐interlayers. By introducing such interlayers, carrier recombination zone could be controlled to suppress the generally unavoidable quenching of long‐range triplet excitons, successfully achieving remarkable external quantum efficiency of 15.1%, maximum power efficiency of 48.9 lm W−1, and extended LT50 lifetime (time to 50% of initial luminance of 1000 cd m−2) exceeding 2000 h. To this knowledge, this is the first pioneering work for realizing high efficiency, low efficiency roll‐off, and operational stable WOLEDs based on a TADF assistant host. The current findings also indicate that broadening the carrier recombination region in both interlayers and yellow emitting layer as well as restraining exciplex quenching at carrier blocking interface make significant roles on reduced efficiency roll‐off and enhanced operational lifetime.  相似文献   

2.
The simultaneous realization of high quantum yield and exciton utilizing efficiency (ηr) is still a formidable challenge in near‐infrared (NIR) fluorescent organic light‐emitting diodes (FOLEDs). Here, to achieve a high quantum yield, a novel NIR dye, 4,9‐bis(4‐(diphenylamino)phenyl)‐naphtho[2,3‐c ][1,2,5]selenadiazole, is designed and synthesized with a large highest occupied molecular orbital/lowest unoccupied molecular orbital overlap and an aggregation‐induced emission property, which demonstrates a high photoluminescence quantum yield of 27% at 743 nm in toluene and 29% at 723 nm in a blend film. For a high ηr, an orange‐emitting thermally activated delayed fluorescent material, 1,2‐bis(9,9‐dimethyl‐9,10‐dihydroacridine)‐4,5‐dicyanobenzene, is chosen as the sensitizing host to harvest triplet excitons in devices. The optimized devices achieve a good ηr of 45.7% and a high external quantum efficiency up to 2.65% at 730 nm, with a very small efficiency roll‐off of 2.41% at 200 mA cm?2, which are among the most efficient values for NIR‐FOLEDs over 700 nm. The effective utilization of triplet excitons via the thermally activated delayed fluorescence‐sensitizing host will pave a way to realize high‐efficiency NIR‐FOLEDs with small efficiency roll‐off.  相似文献   

3.
Thermally activated delayed fluorescence (TADF)‐based white organic light‐emitting diodes (WOLEDs) are highly attractive because the TADF emitters provide a promising alternative route to harvest triplet excitons. One of the major challenges is to achieve superior efficiency/color rendering index/color stability and low efficiency roll‐off simultaneously. In this paper, high‐performance hybrid WOLEDs are demonstrated by employing an efficient blue TADF emitter combined with red and green phosphorescent emitters. The resulting WOLED shows the maximum external quantum efficiency, current efficiency, and power efficiency of 23.0%, 51.0 cd A?1, and 51.7 lm W?1, respectively. Moreover, the device exhibits extremely stable electroluminescence spectra with a high color rendering index of 89 and Commission Internationale de L'Eclairage coordinates of (0.438, 0.438) at the practical brightness of 1000 cd m?2. The achievement of these excellent performances is systematically investigated by versatile experimental and theoretical evidences, from which it is concluded that the utilization of a blue‐green‐red cascade energy transfer structure and the precise manipulation of charges and excitons are the key points. It can be anticipated that this work might be a starting point for further research towards high‐performance hybrid WOLEDs.  相似文献   

4.
Despite the success of thermally activated delayed fluorescence (TADF) emitters in monochromatic organic light‐emitting diodes (OLED), only few efficient full‐TADF white OLEDs (WOLED) are reported because of the challenge in rational exciton allocation between blue and other color emitters. Herein, it is demonstrated that the appropriate exciton delocalization in blue TADF matrixes can simultaneously support the sufficient blue emission and the energy loss–free charge and exciton transfer to yellow TADF emitters. Through introducing steric hindrance–modulated intermolecular hydrogen bond networks, a fluorinated carbazole‐phosphine oxide hybrid realizes the balance of exciton localization and delocalization, giving rise to state‐of‐the‐art external quantum efficiency beyond 20% from its simple trilayer full‐TADF WOLEDs, accompanied by excellent spectral stability. The correlation between the efficiencies of the blue TADF matrixes and their intermolecular interactions reveals that the exciton delocalization is crucial for the exciton allocation optimization in multicomponent emission systems.  相似文献   

5.
Since the first report in 2015, multiresonant thermally activated delayed fluorescent (MR‐TADF) compounds, a subclass of TADF emitters based on a heteroatom‐doped nanographene material, have come to the fore as attractive hosts as well as emitters for organic light‐emitting diodes (OLEDs). MR‐TADF compounds typically show very narrow‐band emission, high photoluminescence quantum yields, and small ΔEST values, typically around 200 meV, coupled with high chemical and thermal stabilities. These materials properties have translated into some of the best reported deep‐blue TADF OLEDs. Here, a detailed review of MR‐TADF compounds and their derivatives reported so far is presented. This review comprehensively documents all MR‐TADF compounds, with a focus on the synthesis, optoelectronic behavior, and OLED performance. In addition, computational approaches are surveyed to accurately model the excited state properties of these compounds.  相似文献   

6.
Two thioxanthone‐derived isomeric series of thermally activated delayed fluorescence (TADF) emitters 1,6‐2TPA‐TX/3,6‐2TPA‐TX and 1,6‐2TPA‐TXO/3,6‐2TPA‐TXO are developed for organic light‐emitting diodes (OLEDs). Blue emission devices based on symmetrical 3,6‐2TPA‐TX with common vertical transition route realize an extremely high external quantum efficiency (EQE) of 23.7%, and an ever highest EQE of 24.3% is achieved for yellow emission devices based on 3,6‐2TPA‐TXO by solely changing the sulfur atom valence state of the thioxanthone core. In contrast, their corresponding asymmetric isomers are affected by intramolecular energy transfer and more severely by a nonradiative deactivation pathway, to give much low EQE values (<5%). By utilizing 3,6‐2TPA‐TX as a blue emitter and 3,6‐2TPA‐TXO as a yellow emitter, an ever highest EQE of 20.4% is achieved for all‐fluorescence white OLEDs.  相似文献   

7.
Since the beginning of organic light‐emitting diodes (OLEDs), blue emission has attracted the most attention and many research groups worldwide have worked on the design of materials for stable and highly efficient blue OLEDs. However, almost all the high‐efficiency blue OLEDs using fluorescent materials are multilayer devices, which are constituted of a stack of organic layers to improve the injection, transport, and recombination of charges within the emissive layer. Although the technology has been mastered, it suffers from real complexity and high cost and is time‐consuming. Simplifying the multilayer structure with a single‐layer one, the simplest devices made only of electrodes and the emissive layer have appeared as an appealing strategy for this technology. However, removing the functional organic layers of an OLED stack leads to a dramatic decrease of the performance and achieving high‐efficiency blue single‐layer OLEDs requires intense research especially in terms of materials design. Herein, an exhaustive review of blue emitting fluorophores that have been incorporated in single‐layer OLEDs is reported, and the links between their electronic properties and the device performance are discussed. Thus, a structure/properties/device performance relationship map is drawn, which is of interest for the future design of organic materials.  相似文献   

8.
A barely reached balance between weak intramolecular‐charge‐transfer (ICT) and small singlet–triplet splitting energy (ΔEST) for reverse intersystem crossing from non‐emissive triplet state to radiative singlet state impedes the realization of deep‐blue thermally activated delayed fluorescence (TADF) materials. By discarding the twisted‐ICT framework for a flattened molecular backbone and introducing a strong acceptor possessing n–π* transition character, hypsochromic color, a large radiative rate (kF), and small ΔEST are achieved simultaneously. Six molecules with a 9,9‐dimethyl‐10‐phenyl‐9,10‐dihydroacridine (i‐DMAc) donor are synthesized and investigated. Coinciding with time‐dependent density functional theory, the reduced dihedral angles between donor (D) and acceptor (A) weaken ICT from dispersed charge density and enable a large kF from increased frontier molecular orbitals overlap. Despite the separated highest occupied (HOMO) and lowest unoccupied molecular orbital (LUMO) population, the intercalation of phenyl bridges between D–A increases kF but significantly lowers the local triplet excited state, indicating small HOMO and LUMO overlap is not a sufficient, but necessary condition for reduced ΔEST. Integrating short conjugation length and carbonyl or triazine acceptors into the complanation molecules, deep‐blue TADF organic light‐emitting diodes demonstrate maximum external quantum efficiencies of 11.5% and 10.9% with Commission Internationale de l'Eclairage coordinates of (0.16, 0.09) and (0.15, 0.11), respectively, which is quite close to the stringent National Television System Committee blue standard.  相似文献   

9.
The development of efficient red thermally activated delayed fluorescence (TADF) emitters with an emission wavelength beyond 600 nm remains a great challenge for organic light‐emitting diodes (OLEDs). Herein, two pairs of isomers are designed and synthesized by attaching electron‐donor 9,9‐diphenyl‐9,10‐dihydroacridine (DPAC) moiety to the different positions of two kinds of highly rigid planar acceptor cores (PDCN and PPDCN). Their TADF efficiencies and emission maxima (599–726 nm) are regulated by molecular isomer manipulation. Interestingly, the photoluminescence quantum yields (ΦPLs) of trans‐isomers T‐DA‐1 and T‐DA‐2 (78% and 89%) are remarkably higher than those of their corresponding cis‐isomers C‐DA‐1 and C‐DA‐2 (12% and 14%). Significantly increased ΦPL values can be explained by single crystal structures and theoretical simulation. As a result, a deep red TADF‐OLED based on T‐DA‐2 displays a maximum external quantum efficiency (EQE) of 26.26% at 640 nm. Notably, at a brightness of 100 cd m?2, the EQE value of T‐DA‐2‐based device still remains at an extremely high level of 23.95%, representing the highest value for reported red TADF‐OLEDs at the same brightness. These results provide a reasonable pathway to optimize optoelectronic properties and thereby construct efficient red TADF emitters through rational isomer engineering.  相似文献   

10.
An organic light‐emitting diode (OLED) with the blue emitter CC2TA showing thermally activated delayed fluorescence (TADF) is presented exhibiting an external quantum efficiency () of 11% ± 1%, which clearly exceeds the classical limit for fluorescent OLEDs. The analysis of the emission layer by angular dependent photoluminescence (PL) measurements shows a very high degree of 92% horizontally oriented transition dipole moments. Excited states lifetime measurements of the prompt fluorescent component under PL excitation yield a radiative quantum efficiency of 55% of the emitting species. Thus, the radiative exciton fraction has to be significantly higher than 25% due to TADF. Performing a simulation based efficiency analysis for the OLED under investigation allows for a quantification of individual contributions to the efficiency increase originating from horizontal emitter orientation and TADF. Remarkably, the strong horizontal emitter orientation leads to a light‐outcoupling efficiency of more than 30%.  相似文献   

11.
12.
Significant effort has been made to develop novel material systems to improve the efficiency of near‐infrared organic light‐emitting diodes (NIR OLEDs). Of those, fluorescent chromophores are mostly studied because of their advantages in cost and tunability. However, it is still rare for fluorescent NIR emitters to present good color purities in the NIR range and to have high external quantum efficiency (EQE). Here, a wedge‐shaped D‐π‐A‐π‐D emitter APDC‐DTPA with thermally activated delayed fluorescence property and a small single‐triplet splitting (ΔEst) of 0.14 eV is presented. The non‐doped NIR device exhibits excellent performance with a maximum EQE of 2.19% and a peak wavelength of 777 nm. Remarkably, when 10 wt% of APDC‐DTPA is doped in 1,3,5‐tris(1‐phenyl‐1H‐benzimidazol‐2‐yl)benzene host, an extremely high EQE of 10.19% with an emission peak of 693 nm is achieved. All these values represent the best result for NIR OLEDs based on a pure organic fluorescent emitter with similar device structure and color gamut.  相似文献   

13.
Thermally activated delayed fluorescence (TADF) materials, which enable the full harvesting of singlet and triplet excited states for light emission, are expected as the third‐generation emitters for organic light‐emitting diodes (OLEDs), superseding the conventional fluorescence and phosphorescence materials. High photoluminescence quantum yield (ΦPL), narrow‐band emission (or high color purity), and short delayed fluorescence lifetime are all strongly desired for practical applications. However, to date, no rational design strategy of TADF emitters is established to fulfill these requirements. Here, an epoch‐making design strategy is proposed for producing high‐performance TADF emitters that concurrently exhibiting high ΦPL values close to 100%, narrow emission bandwidths, and short emission lifetimes of ≈1 µs, with a fast reverse intersystem crossing rate of over 106 s?1. A new family of TADF emitters based on dibenzoheteraborins is introduced, which enable both doped and non‐doped TADF‐OLEDs to achieve markedly high external electroluminescence quantum efficiencies, exceeding 20%, and negligible efficiency roll‐offs at a practical high luminance. Systematic photophysical and theoretical investigations and device evaluations for these dibenzoheteraborin‐based TADF emitters are reported here.  相似文献   

14.
Luminescent materials with thermally activated delayed fluorescence (TADF) can harvest singlet and triplet excitons to afford high electroluminescence (EL) efficiencies for organic light‐emitting diodes (OLEDs). However, TADF emitters generally have to be dispersed into host matrices to suppress emission quenching and/or exciton annihilation, and most doped OLEDs of TADF emitters encounter a thorny problem of swift efficiency roll‐off as luminance increases. To address this issue, in this study, a new tailor‐made luminogen (dibenzothiophene‐benzoyl‐9,9‐dimethyl‐9,10‐dihydroacridine, DBT‐BZ‐DMAC) with an unsymmetrical structure is synthesized and investigated by crystallography, theoretical calculation, spectroscopies, etc. It shows aggregation‐induced emission, prominent TADF, and interesting mechanoluminescence property. Doped OLEDs of DBT‐BZ‐DMAC show high peak current and external quantum efficiencies of up to 51.7 cd A?1 and 17.9%, respectively, but the efficiency roll‐off is large at high luminance. High‐performance nondoped OLED is also achieved with neat film of DBT‐BZ‐DMAC, providing excellent maxima EL efficiencies of 43.3 cd A?1 and 14.2%, negligible current efficiency roll‐off of 0.46%, and external quantum efficiency roll‐off approaching null from peak values to those at 1000 cd m?2. To the best of the authors' knowledge, this is one of the most efficient nondoped TADF OLEDs with small efficiency roll‐off reported so far.  相似文献   

15.
The development of red thermally activated delayed fluorescence (TADF) emitters having excellent optoelectronic properties and satisfactory electroluminescence efficiency is full of challenges due to strict molecular design principles. Two red TADF molecules, 3‐(9,9‐dimethylacridin‐10(9H)‐yl)acenaphtho[1,2‐b]quinoxaline‐9,10‐dicarbonitrile and 3‐(2,7‐dimethyl‐10H‐spiro[acridine‐9,9′‐fluoren]‐10‐yl)acenaphtho[1,2‐b]quinoxaline‐9,10‐dicarbonitrile, are developed by adopting a donor–acceptor molecular architecture bearing an electron‐accepting acenaphtho[1,2‐b]quinoxaline‐9,10‐dicarbonitrile (ANQDC) moiety and a 9,9‐dimethyl‐9,10‐dihydroacridine or 2,7‐dimethyl‐10H‐spiro[acridine‐9,9′‐fluorene] electron donor. The combined effects of rigid and planar D/A moieties and highly steric hindrance between D and A groups endow both molecules with high rigidity to suppress nonradiative decay processes, resulting in high photoluminescence quantum efficiencies (ΦPLs) of up to 95%. Attributed to the linear and planar acceptor motif and rod‐like molecular configuration, both emitters achieve high horizontal ratios of emitting dipole orientation of ≈80%. The organic light‐emitting diodes (OLEDs) based on both emitters exhibit red emissions peaking at ≈615 nm and successfully afford ultrahigh electroluminescence performance with an external quantum efficiency of nearly 28% and a power efficiency of above 50 lm W?1, on par with the state‐of‐the‐art device efficiency for red TADF OLEDs. This presents a feasible design strategy for excellent TADF emitters simultaneously possessing high ΦPLs and horizontally aligned emitting dipoles.  相似文献   

16.
17.
Increasing exciton utilization and reducing exciton annihilation are crucial to achieve high performance of organic light‐emitting diodes (OLEDs), which greatly depend on molecular engineering of emitters and hosts. A novel luminogen (SBF‐BP‐DMAC) is synthesized and characterized. Its crystal and electronic structures, thermal stability, electrochemical behavior, carrier transport, photoluminescence, and electroluminescence are investigated. SBF‐BP‐DMAC exhibits enhanced photoluminescence and promotes delayed fluorescence in solid state and bipolar carrier transport ability, and thus holds multifunctionality of emitter and host for OLEDs. Using SBF‐BP‐DMAC as an emitter, the nondoped OLEDs exhibit maximum electroluminescence (EL) efficiencies of 67.2 cd A?1, 65.9 lm W?1, and 20.1%, and the doped OLEDs provide maximum EL efficiencies of 79.1 cd A?1, 70.7 lm W?1, and 24.5%. A representative orange phosphor, Ir(tptpy)2acac, is doped into SBF‐BP‐DMAC for OLED fabrication, giving rise to superior EL efficiencies of 88.0 cd A?1, 108.0 lm W?1, and 26.8% for orange phosphorescent OLEDs, and forward‐viewing EL efficiencies of 69.3 cd A?1, 45.8 lm W?1, and 21.0% for two‐color hybrid warm‐white OLEDs. All of these OLEDs can retain high EL efficiencies at high luminance, with very small efficiency roll‐offs. The outstanding EL performance demonstrates the great potentials of SBF‐BP‐DMAC in practical display and lighting devices.  相似文献   

18.
Actualizing highly efficient solution‐processed thermally activated delayed fluorescent (TADF) organic light‐emitting diodes (OLEDs) at high brightness becomes significant to the popularization of purely organic electroluminescence. Herein, a highly soluble emitter benzene‐1,3,5‐triyltris((4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)methanone was developed, yielding high delayed fluorescence rate (kTADF > 105 s?1) ascribed to the multitransition channels and tiny singlet–triplet splitting energy (ΔEST ≈ 32.7 meV). The triplet locally excited state is 0.38 eV above the lowest triplet charge‐transfer state, assuring a solely thermal equilibrium route for reverse intersystem crossing. Condensed state solvation effect unveils a hidden “trade‐off”: the reverse upconversion and triplet concentration quenching processes can be promoted but with a reduced radiative rate from the increased dopant concentration and the more polarized surroundings. Striking a delicate balance, corresponding vacuum‐evaporated and solution‐processed TADF‐OLEDs realized maximum external quantum efficiencies (EQEs) of ≈26% and ≈22% with extremely suppressed efficiency roll‐off. Notably, the wet‐processed one achieves to date the highest EQEs of 20.7%, 18.5%, 17.1%, and 13.6%, among its counterparts at the luminance of 1000, 3000, 5000, and 10 000 cd m?2, respectively.  相似文献   

19.
The electron‐transporting material (ETM) is one of the key factors to determine the efficiency and stability of organic light‐emitting diodes (OLEDs). A novel ETM with a “(Acceptor)n–Donor–(Acceptor)n” (“(A)n–D–(A)n”) structure, 2,7‐di([2,2′:6′,2″‐terpyridin]‐4′‐yl)‐9,9′‐spirobifluorene (27‐TPSF), is synthesized by combining electron‐withdrawing terpyridine (TPY) moieties and rigid twisted spirobifluorene, in which the TPY moieties facilitate electron transport and injection while the spirobifluorene moiety ensures high triplet energy (T1 = 2.5 eV) as well as enhances glass transition temperature (Tg = 195 °C) for better stability. By using tris[2‐(p‐tolyl)pyridine]iridium(III) (Ir(mppy)3) as the emitter, the 27‐TPSF‐based device exhibits a maximum external quantum efficiency (ηext, max) of 24.5%, and a half‐life (T50) of 121, 6804, and 382 636 h at an initial luminance of 10 000, 1000, and 100 cd m?2, respectively, which are much better than the commercialized ETM of 9,10‐bis(6‐phenylpyridin‐3‐yl)anthracene (DPPyA). Furthermore, a higher efficiency, a ηext, max of 28.2% and a maximum power efficiency (ηPE, max) of 129.3 lm W?1, can be achieved by adopting bis(2‐phenylpyridine)iridium(III)(2,2,6,6‐tetramethylheptane‐3,5‐diketonate) (Ir(ppy)2tmd) as the emitter and 27‐TPSF as the ETM. These results indicate that the derivative of TPY to form “(A)n–D–(A)n” structure is a promising way to design an ETM with good comprehensive properties for OLEDs.  相似文献   

20.
Efficiency roll‐off in blue organic light‐emitting diodes especially at high brightness still remains a vital issue for which the excitons density‐dependent mechanism of host materials takes most responsibility. Additionally, the efficiency roll‐off leads to high power consumption and reduces the operating lifetime because higher driving voltage and current are required. Here, by subtly modifying the triphenylamine to oxygen‐bridged quasi‐planar structure, a novel thermally activated delayed fluorescence type blue host Tri‐o‐2PO is successfully developed. Efficiency roll‐off based on Tri‐o‐2PO is ultralow with external quantum efficiency (EQE) just dropping by around 2% in the high luminance range from 1000 cd m?2 to 10 000 cd m?2. As expected, low turn‐on voltage (≈2.9 V) of device is also achieved, which is close to the theory limit value (≈2.62 V). Super‐high power efficiency (≈60 lm W?1) and EQE (>22%) are also achieved when utilizing Tri‐o‐2PO as host. Furthermore, two‐color warm‐white light with CIE of (0.45, 0.43) and correlated color temperature of 2921 K is also fabricated and a champion EQE of 21% is delivered. These excellent performances prove the strategy of bridging the triphenylamine to reduce ΔEst is validated and suggest the great potential of this novel skeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号