首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution‐processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g‐C3N4) into the perovskite layer. The addition of g‐C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g‐C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light‐absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density.  相似文献   

2.
Quasi‐2D metal halide perovskite films are promising for efficient light‐emitting diodes (LEDs), because of their efficient radiative recombination and suppressed trap‐assisted quenching compared with pure 3D perovskites. However, because of the multidomain polycrystalline nature of solution‐processed quasi‐2D perovskite films, the composition engineering always impacts the emitting properties with complicated mechanisms. Here, defect passivation and domain distribution of quasi‐2D perovskite films prepared with various precursor compositions are systematically studied. As a result, in perovskite films prepared from stoichiometric quasi‐2D precursor compositions, large organic ammonium cations function well as passivators. In comparison, precursor compositions of simply adding large organic halide salt into a 3D perovskite precursor ensure not only the defect passivation but also the effective formation of quasi‐2D perovskite domains, avoiding unfavorable appearance of low‐order domains. Quasi‐2D perovskite films fabricated with a well‐designed precursor composition achieve a high photoluminescence quantum yield of 95.3% and an external quantum efficiency of 14.7% in LEDs.  相似文献   

3.
Reduced‐dimensional hybrid perovskite semiconductors have recently attracted significant attention due to their promising stability and optoelectronic properties. However, the issue of poor charge transport in 2D perovskites limits its application. Here, studies on intermediate‐controlled crystal growth are reported to improve charge carrier transport in 2D perovskite thin films. It is shown that the coordination strength of solvents with perovskite precursor affects the initial state of intermediate phase formation as well as the subsequent perovskite layer growth. Tuning the solvent composition with a mixture (5:5) of dimethyl formamide (DMF) and dimethyl sulfoxide (DMSO) leads to the growth of highly orientated 2D perovskite films with much‐improved optoelectronic properties (faster transport by ≈50x, longer carrier lifetime by ≈4x, and lower defect density by ≈30x) than the film prepared with pure DMF. Consequently, perovskite solar cells based on DMF/DMSO (5:5) show >80% efficiency improvement than the devices based on pure DMF.  相似文献   

4.
Facile electron injection and extraction are two key attributes desired in electron transporting layers to enhance the efficiency of planar perovskite solar cells. Herein it is demonstrated that the incorporation of alkali metal dopants in mesoporous TiO2 can effectively modulate electronic conductivity and improve the charge extraction process by counterbalancing oxygen vacancies acting as nonradiative recombination centers. Moreover, sulfate bridges (SO42?) grafted on the surface of K‐doped mesoporous titania provide a seamless integration of absorber and electron‐transporting layers that accelerate overall transport kinetics. Potassium doping markedly influences the nucleation of the perovskite layer to produce highly dense films with facetted crystallites. Solar cells made from K:TiO2 electrodes exhibit power conversion efficiencies up to 21.1% with small hysteresis despite all solution coating processes conducted under ambient air conditions (controlled humidity: 25–35%). The higher device efficiencies are attributed to intrinsically tuned electronic conductivity and chemical modification of grain boundaries enabling uniform coverage of perovskite films with large grain size.  相似文献   

5.
Making small nanograins in polycrystalline organic–inorganic halide perovskite (OIHP) films is critical to improving the luminescent efficiency in perovskite light‐emitting diodes (PeLEDs). 3D polycrystalline OIHPs have fundamental limitations related to exciton binding energy and exciton diffusion length. At the same time, passivating the defects at the grain boundaries is also critical when the grain size becomes smaller. Molecular additives can be incorporated to shield the nanograins to suppress defects at grain boundaries; however, unevenly distributed molecular additives can cause imbalanced charge distribution and inefficient local defect passivation in polycrystalline OIHP films. Here, a kinetically controlled polycrystalline organic‐shielded nanograin (OSN) film with a uniformly distributed organic semiconducting additive (2,2′,2′′‐(1,3,5‐benzinetriyl)‐tris(1‐phenyl‐1‐H‐benzimidazole), TPBI) is developed mimicking core–shell nanoparticles. The OSN film causes improved photophysical and electroluminescent properties with improved light out‐coupling by possessing a low refractive index. Finally, highly improved electroluminescent efficiencies of 21.81% ph el?1 and 87.35 cd A?1 are achieved with a half‐sphere lens and four‐time increased half‐lifetime in polycrystalline PeLEDs. This strategy to make homogeneous, defect‐healed polycrystalline core–shell‐mimicked nanograin film with better optical out‐coupling will provide a simple and efficient way to make highly efficient perovskite polycrystal films and their optoelectronics devices.  相似文献   

6.
At present, one of the major factors limiting the further improvement of inverted (p-i-n) perovskite solar cells (PSCs) is trap-assisted non-radiative recombination at the perovskite/electron transporting layer (ETL) interface. Surface passivation with organic ammonium salt is a powerful strategy to improve the performance of PSCs. Herein, an effective method by using propylamine hydroiodide (PAI) and 1,3-diaminopropane dihydroiodide (PDADI) is reported to modify the perovskite/ETL interface. These two ammonium salts do not form new perovskite but directly passivate the defects on the perovskite surface after annealing. The results show that the PDADI-modified perovskite films possess a lower surface defect density and less non-radiative recombination as well as improved charge carrier transport. Based on this strategy, the PDADI-modified p-i-n PSCs deliver an impressive efficiency of 25.09% (certified 24.58%) with an open-circuit voltage of 1.184 V. Furthermore, the unencapsulated PDADI-modified PSCs also exhibit good storage stability, retaining 91% of initial PCE at 65 °C in a N2 glove box for 1300 h. This strategy provides an efficient route to fabricate highly efficient and stable inverted p-i-n structured PSCs.  相似文献   

7.
Surface defects cause non-radiative charge recombination and reduce the photovoltaic performance of perovskite solar cells (PSCs), thus effective passivation of defects has become a crucial method for achieving efficient and stable devices. Organic ammonium halides have been widely used for perovskite surface passivation, due to their simple preparation, lattice matching with perovskite, and high defects passivation ability. Herein, a surface passivator 2,4,6-trimethylbenzenaminium iodide (TMBAI) is employed as the interfacial layer between the spiro-OMeTAD and perovskite layer to modify the surface defect states. It is found that TMBAI treatment suppresses the nonradiative charge carrier recombination, resulting in a 60 mV increase of the open-circuit voltage (Voc) (from 1.11 to 1.17 V) and raises the fill factor from 76.3% to 80.3%. As a result, the TMBAI-based PSCs device demonstrates a power conversion efficiency (PCE) of 23.7%. Remarkably, PSCs with an aperture area of 1 square centimeter produce a PCE of 21.7% under standard AM1.5 G sunlight. The unencapsulated TMBAI-modified device retains 92.6% and 90.1% of the initial values after 1000 and 550 h under ambient conditions (humidity 55%–65%) and one-sun continuous illumination, respectively.  相似文献   

8.
Organolead trihalide perovskite films with a large grain size and excellent surface morphology are favored to good‐performance solar cells. However, interstitial and antisite defects related trap‐states are originated unavoidably on the surfaces of the perovskite films prepared by the solution deposition procedures. The development of post‐growth treatment of defective films is an attractive method to reduce the defects to form good‐quality perovskite layers. Herein, a post‐treatment tactic is developed to optimize the perovskite crystallization by treating the surface of the one‐step deposited CH3NH3PbI3 (MAPbI3) using formamidinium iodide (FAI). Charge carrier kinetics investigated via time‐resolved photoluminescent, open‐circuit photovoltage decay, and time‐resolved charge extraction indicate that FAI post‐treatment will boost the perovskite crystalline quality, and further result in the reduction of the defects or trap‐states in the perovskite films. The photovoltaic devices by FAI treatment show much improved performance in comparison to the controlled solar cell. As a result, a champion solar cell with the best power conversion efficiency of 20.25% is obtained due to a noticeable improvement in fill factor. This finding exhibits a simple procedure to passivate the perovskite layer via regulating the crystallization and decreasing defect density.  相似文献   

9.
Hybrid organic–inorganic metal halide perovskites are particularly promising for light‐emitting diodes (LEDs) due to their attractive optoelectronic properties such as wavelength tunability, narrow emission linewidth, defect tolerance, and high charge carrier mobility. However, the undercoordinated Pb and halide at the perovskite nanocrystal (NC) surface causes traps and nonradiative recombination. In this work, the external quantum efficiency of iodide‐based perovskite LEDs is boosted to greater than 15%, with an emission wavelength at 750 nm, by engineering the perovskite NC surface stoichiometry and chemical structure of bulky organoammonium ligands. To the stoichiometric precursor solution for the 3D bulk perovskite, 20% molar ratio of methylammonium iodide is added in addition to 20% excess bulky organoammonium iodide to ensure that the NC surface is organoammonium terminated as the crystal size is decreased to 5–10 nm. This combination ensures minimal undercoordinated Pb and halide on the surface, avoids 2D phases, and acts to provide nanosized perovskite grains which allow for smooth and pinhole‐free films. As a result of time‐resolved photoluminescence (PL) and PL quantum yield measurements, it is possible to demonstrate that this surface modification increases the radiative recombination rate while reducing the nonradiative rate.  相似文献   

10.
Defects at the surface and grain boundaries of metal–halide perovskite films lead to performance losses of perovskite solar cells (PSCs). Here, organic cyano‐based π‐conjugated molecules composed of indacenodithieno[3,2‐b]thiophene (IDTT) are reported and it is found that their cyano group can effectively passivate such defects. To achieve a homogeneous distribution, these molecules are dissolved in the antisolvent, used to initiate the perovskite crystallization. It is found that these molecules are self‐anchored at the grain boundaries due to their strong binding to undercoordinated Pb2+. On a device level, this passivation scheme enhances the charge separation and transport at the grain boundaries due to the well‐matched energetic levels between the passivant and the perovskite. Consequently, these benefits contribute directly to the achievement of power conversion efficiencies as high as 21.2%, as well as the improved environmental and thermal stability of the PSCs. The surface treatment provides a new strategy to simultaneously passivate defects and enhance charge extraction/transport at the device interface by manipulating the anchoring groups of the molecules.  相似文献   

11.
Herein, a 2D SnS2 electron transporting layer is reported via self‐assembly stacking deposition for highly efficient planar perovskite solar cells, achieving over 20% power conversion efficiency under AM 1.5 G 100 mW cm?2 light illumination. To the best of the authors' knowledge, this represents the highest efficiency that has so far been reported for perovskite solar cells using a 2D electron transporting layer. The large‐scaled 2D multilayer SnS2 sheet structure triggers a heterogeneous nucleation over the perovskite precursor film. The intermolecular Pb???S interactions between perovskite and SnS2 could passivate the interfacial trap states, which suppress charge recombination and thus facilitate electron extraction for balanced charge transport at interfaces between electron transporting layer/perovskite and hole transporting layer/perovskite. This work demonstrates that 2D materials have great potential for high‐performance perovskite solar cells.  相似文献   

12.
Mixed lead and tin (Pb/Sn) hybrid perovskites exhibit a great potential in fabricating all-perovskite tandem devices due to their easily tunable bandgaps. However, the energy deficit and instability in Pb/Sn perovskite solar cells (PSCs) constrain their practical applications, which renders defect passivation engineering indispensable to develop highly efficient and long-term stable PSCs. Herein, the mechanisms of strain tailoring and defect passivation in Pb/Sn PSCs by 2D ligands are investigated. The 2D ligands include electroneutral cations with long alkyl chain (LAC), iodates with relatively short alkyl chain (SAC) and their mixtures. This study reveals that LAC ligands facilitate the relaxation of tensile strain in perovskite films while SAC ligands cause strain buildup. By mixing LAC/SAC ligands, tensile strain in perovskite films can be balanced which improves solar cell performance. PSCs with admixed β-guanidinopropionic acid (GUA)/phenethylammonium iodide (PEAI) exhibit enhanced open circuit voltage and fill factor, which is attributed to reduced nonradiative recombination losses in the bulk and at the interfaces. Furthermore, the operational stability of PSCs is slightly improved by the mixed 2D ligands. This work reveals the mechanisms of 2D ligands in strain tailoring and defect passivation toward efficient and stable narrow-bandgap PSCs.  相似文献   

13.
Substantial progress has been made in blue perovskite light-emitting diodes (PeLEDs). In this review, the strategies for high-performance blue PeLEDs are described, and the main focus is on the optimization of the optical and electrical properties of perovskites. In detail, the fundamental device working principles are first elucidated, followed by a systematical discussion of the key issues for achieving high-quality perovskite nanocrystals (NCs) and quasi-2D perovskites. These involve ligand optimization and metal doping in enhancing the carrier transport and reducing the traps of perovskite NCs, as well as the perovskite phase modulation and defect passivation in improving energy transfer and emission efficiency of quasi-2D perovskites. The strategies for efficient 3D mixed-halide perovskite and lead-free perovskite blue LEDs are then briefly introduced. After that, other strategies, including effective charge transport layer, efficient perovskite emission system, and effective device architecture for high light outcoupling efficiency, are further discussed to boost the blue PeLED performances. Meanwhile, the testing standard of blue PeLED lifetime is suggested to enable the direct comparisons of the device operational stability. Finally, challenges and future directions for blue PeLEDs are addressed.  相似文献   

14.
Perovskite light‐emitting diodes (LEDs) require small grain sizes to spatially confine charge carriers for efficient radiative recombination. As grain size decreases, passivation of surface defects becomes increasingly important. Additionally, polycrystalline perovskite films are highly brittle and mechanically fragile, limiting their practical applications in flexible electronics. In this work, the introduction of properly chosen bulky organo‐ammonium halide additives is shown to be able to improve both optoelectronic and mechanical properties of perovskites, yielding highly efficient, robust, and flexible perovskite LEDs with external quantum efficiency of up to 13% and no degradation after bending for 10 000 cycles at a radius of 2 mm. Furthermore, insight of the improvements regarding molecular structure, size, and polarity at the atomic level is obtained with first‐principles calculations, and design principles are provided to overcome trade‐offs between optoelectronic and mechanical properties, thus increasing the scope for future highly efficient, robust, and flexible perovskite electronic device development.  相似文献   

15.
The external quantum efficiencies (EQEs) of perovskite quantum dot light‐emitting diodes (QD‐LEDs) are close to the out‐coupling efficiency limitation. However, these high‐performance QD‐LEDs still suffer from a serious issue of efficiency roll‐off at high current density. More injected carriers produce photons less efficiently, strongly suggesting the variation of ratio between radiative and non‐radiative recombination. An approach is proposed to balance the carrier distribution and achieve high EQE at high current density. The average interdot distance between QDs is reduced and this facilitates carrier transport in QD films and thus electrons and holes have a balanced distribution in QD layers. Such encouraging results augment the proportion of radiative recombination, make devices with peak EQE of 12.7%, and present a great device performance at high current density with an EQE roll‐off of 11% at 500 mA cm?2 (the lowest roll‐off known so far) where the EQE is still over 11%.  相似文献   

16.
To achieve high‐performance perovskite solar cells, especially with mesoscopic cell structure, the design of the electron transport layer (ETL) is of paramount importance. Highly branched anatase TiO2 nanowires (ATNWs) with varied orientation are grown via a facile one‐step hydrothermal process on a transparent conducting oxide substrate. These films show good coverage with optimization obtained by controlling the hydrothermal reaction time. A homogeneous methyl­ammonium lead iodide (CH3NH3PbI3) perovskite thin film is deposited onto these ATNW films forming a bilayer architecture comprising of a CH3NH3PbI3 sensitized ATNW bottom layer and a CH3NH3PbI3 capping layer. The formation, grain size, and uniformity of the perovskite crystals strongly depend on the degree of surface coverage and the thickness of the ATNW film. Solar cells constructed using the optimized ATNW thin films (220 nm in thickness) yield power conversion efficiencies up to 14.2% with a short‐circuit photocurrent density of 20.32 mA cm?2, an open‐circuit photovoltage of 993 mV, and a fill factor of 0.70. The dendritic ETL and additional perovskite capping layer efficiently capture light and thus exhibit a superior light harvesting efficiency. The ATNW film is an effective hole‐blocking layer and efficient electron transport medium for excellent charge separation and collection within the cells.  相似文献   

17.
The plasmonic characteristic of core–shell nanomaterials can effectively improve exciton‐generation/dissociation and carrier‐transfer/collection. In this work, a new strategy based on core–shell Au@CdS nanospheres is introduced to passivate perovskite grain boundaries (GBs) and the perovskite/hole transport layer interface via an antisolvent process. These core–shell Au@CdS nanoparticles can trigger heterogeneous nucleation of the perovskite precursor for high‐quality perovskite films through the formation of the intermediate Au@CdS–PbI2 adduct, which can lower the valence band maximum of the 2,2,7,7‐tetrakis(N,N‐di‐p‐methoxyphenyl‐amine)9,9‐spirobifluorene (Spiro‐OMeTAD) for a more favorable energy alignment with the perovskite material. With the help of the localized surface plasmon resonance effect of Au@CdS, holes can easily overcome the barrier at the perovskite/Spiro‐OMeTAD interface (or GBs) through the bridge of the intermediate Au@CdS–PbI2, avoiding the carrier accumulation, and suppress the carrier trap recombination at the Spiro‐OMeTAD/perovskite interface. Consequently, the Au@CdS‐based perovskite solar cell device achieves a high efficiency of over 21%, with excellent stability of ≈90% retention of initial power conversion efficiencies after 45 days storage in dry air.  相似文献   

18.
Organolead halide hybrid perovskite solar cells (PSCs) have become a shining star in the renewable devices field due to the sharp growth of power conversion efficiency; however, interfacial recombination and carrier-extraction losses at heterointerfaces between the perovskite active layer and the carrier transport layers remain the two main obstacles to further improve the power conversion efficiency. Here, novel field-effect passivation has been successfully induced to effectively suppress the interfacial recombination and improve interfacial charge transfer by incorporating interfacial polarization via inserting a high work function interlayer between perovskite and holes transport layer. The charge dynamics within the device and the mechanism of the field-effect passivation are elucidated in detail. The unique interfacial dipoles reinforce the built-in field and prevent the photogenerated charges from recombining, resulting in power conversion efficiency up to 21.7% with negligible hysteresis. Furthermore, the hydrophobic interlayer also suppresses the perovskite decomposition by preventing the moisture penetration, thereby improving the humidity stability of the PSCs (>91% of the initial power conversion efficiency (PCE) after 30 d in 65 ± 5% humidity). Finally, several promising research perspectives based on field-effect passivation are also suggested for further conversion efficiency improvements and photovoltaic applications.  相似文献   

19.
2D halide perovskites have recently been recognized as a promising avenue in perovskite solar cells (PSCs) in terms of encouraging stability and defect passivation effect. However, the efficiency (less than 15%) of ultrastable 2D Ruddlesden–Popper PSCs still lag far behind their traditional 3D perovskite counterparts. Here, a rationally designed 2D‐3D perovskite stacking‐layered architecture by in situ growing 2D PEA2PbI4 capping layers on top of 3D perovskite film, which drastically improves the stability of PSCs without compromising their high performance, is reported. Such a 2D perovskite capping layer induces larger Fermi‐level splitting in the 2D‐3D perovskite film under light illumination, resulting in an enhanced open‐circuit voltage (Voc) and thus a higher efficiency of 18.51% in the 2D‐3D PSCs. Time‐resolved photoluminescence decay measurements indicate the facilitated hole extraction in the 2D‐3D stacking‐layered perovskite films, which is ascribed to the optimized energy band alignment and reduced nonradiative recombination at the subgap states. Benefiting from the high moisture resistivity as well as suppressed ion migration of the 2D perovskite, the 2D‐3D PSCs show significantly improved long‐term stability, retaining nearly 90% of the initial power conversion efficiency after 1000 h exposure in the ambient conditions with a high relative humidity level of 60 ± 10%.  相似文献   

20.
Perovskite solar cells have achieved the highest power conversion efficiencies on metal oxide n‐type layers, including SnO2 and TiO2. Despite ZnO having superior optoelectronic properties to these metal oxides, such as improved transmittance, higher conductivity, and closer conduction band alignment to methylammonium (MA)PbI3, ZnO is largely overlooked due to a chemical instability when in contact with metal halide perovskites, which leads to rapid decomposition of the perovskite. While surface passivation techniques have somewhat mitigated this instability, investigations as to whether all metal halide perovskites exhibit this instability with ZnO are yet to be undertaken. Experimental methods to elucidate the degradation mechanisms at ZnO–MAPbI3 interfaces are developed. By substituting MA with formamidinium (FA) and cesium (Cs), the stability of the perovskite–ZnO interface is greatly enhanced and it is found that stability compares favorably with SnO2‐based devices after high‐intensity UV irradiation and 85 °C thermal stressing. For devices comprising FA‐ and Cs‐based metal halide perovskite absorber layers on ZnO, a 21.1% scanned power conversion efficiency and 18% steady‐state power output are achieved. This work demonstrates that ZnO appears to be as feasible an n‐type charge extraction layer as SnO2, with many foreseeable advantages, provided that MA cations are avoided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号