首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
All‐solid‐state lithium metal batteries (ASSLMBs) have attracted significant attention due to their superior safety and high energy density. However, little success has been made in adopting Li metal anodes in sulfide electrolyte (SE)‐based ASSLMBs. The main challenges are the remarkable interfacial reactions and Li dendrite formation between Li metal and SEs. In this work, a solid‐state plastic crystal electrolyte (PCE) is engineered as an interlayer in SE‐based ASSLMBs. It is demonstrated that the PCE interlayer can prevent the interfacial reactions and lithium dendrite formation between SEs and Li metal. As a result, ASSLMBs with LiFePO4 exhibit a high initial capacity of 148 mAh g?1 at 0.1 C and 131 mAh g?1 at 0.5 C (1 C = 170 mA g?1), which remains at 122 mAh g?1 after 120 cycles at 0.5 C. All‐solid‐state Li‐S batteries based on the polyacrylonitrile‐sulfur composite are also demonstrated, showing an initial capacity of 1682 mAh g?1. The second discharge capacity of 890 mAh g?1 keeps at 775 mAh g?1 after 100 cycles. This work provides a new avenue to address the interfacial challenges between Li metal and SEs, enabling the successful adoption of Li metal in SE‐based ASSLMBs with high energy density.  相似文献   

2.
Herein, Ti4+ in P′2‐Na0.67[(Mn0.78Fe0.22)0.9Ti0.1]O2 is proposed as a new strategy for optimization of Mn‐based cathode materials for sodium‐ion batteries, which enables a single phase reaction during de‐/sodiation. The approach is to utilize the stronger Ti–O bond in the transition metal layers that can suppress the movements of Mn–O and Fe–O by sharing the oxygen with Ti by the sequence of Mn–O–Ti–O–Fe. It delivers a discharge capacity of ≈180 mAh g?1 over 200 cycles (86% retention), with S‐shaped smooth charge–discharge curves associated with a small volume change during cycling. The single phase reaction with a small volume change is further confirmed by operando synchrotron X‐ray diffraction. The low activation barrier energy of ≈541 meV for Na+ diffusion is predicted using first‐principles calculations. As a result, Na0.67[(Mn0.78Fe0.22)0.9Ti0.1]O2 can deliver a high reversible capacity of ≈153 mAh g?1 even at 5C (1.3 A g?1), which corresponds to ≈85% of the capacity at 0.1C (26 mA g?1). The nature of the sodium storage mechanism governing the ultrahigh electrode performance in a full cell with a hard carbon anode is elucidated, revealing the excellent cyclability and good retention (≈80%) for 500 cycles (111 mAh g?1) at 5C (1.3 A g?1).  相似文献   

3.
Bismuth (Bi) is an attractive material as anodes for both sodium‐ion batteries (NIBs) and potassium‐ion batteries (KIBs), because it has a high theoretical gravimetric capacity (386 mAh g?1) and high volumetric capacity (3800 mAh L?1). The main challenges associated with Bi anodes are structural degradation and instability of the solid electrolyte interphase (SEI) resulting from the huge volume change during charge/discharge. Here, a multicore–shell structured Bi@N‐doped carbon (Bi@N‐C) anode is designed that addresses these issues. The nanosized Bi spheres are encapsulated by a conductive porous N‐doped carbon shell that not only prevents the volume expansion during charge/discharge but also constructs a stable SEI during cycling. The Bi@N‐C exhibits unprecedented rate capability and long cycle life for both NIBs (235 mAh g?1 after 2000 cycles at 10 A g?1) and KIBs (152 mAh g?1 at 100 A g?1). The kinetic analysis reveals the outstanding electrochemical performance can be attributed to significant pseudocapacitance behavior upon cycling.  相似文献   

4.
Rechargeable aluminum‐ion batteries (AIBs) are regarded as promising candidates for post‐lithium energy storage systems (ESSs). For addressing the critical issues in the current liquid AIB systems, here a flexible solid‐state AIB is established using a gel‐polymer electrolyte for achieving robust electrode–electrolyte interfaces. Different from utilization of solid‐state systems for alleviating the safety issues and enhancing energy density in lithium‐ion batteries, employment of polymeric electrolytes mainly focuses on addressing the essential problems in the liquid AIBs, including unstable internal interfaces induced by mechanical deformation and production of gases as well as unfavorable separators. Particularly, such gel electrolyte enables the solid‐state AIBs to present an ultra‐fast charge capability within 10 s at current density of 600 mA g?1. Meanwhile, an impressive specific capacity ≈120 mA h g?1 is obtained at current density of 60 mA g?1, approaching the theoretical limit of graphite‐based AIBs. In addition to the well‐retained electrochemical performance below the ice point, the solid‐state AIBs also hold great stability and safety under various critical conditions. The results suggest that such new prototype of solid‐state AIBs with robust electrode–electrolyte interfaces promises a novel strategy for fabricating stable and safe flexible ESSs.  相似文献   

5.
Flexible freestanding electrodes are highly desired to realize wearable/flexible batteries as required for the design and production of flexible electronic devices. Here, the excellent electrochemical performance and inherent flexibility of atomically thin 2D MoS2 along with the self‐assembly properties of liquid crystalline graphene oxide (LCGO) dispersion are exploited to fabricate a porous anode for high‐performance lithium ion batteries. Flexible, free‐standing MoS2–reduced graphene oxide (MG) film with a 3D porous structure is fabricated via a facile spontaneous self‐assembly process and subsequent freeze‐drying. This is the first report of a one‐pot self‐assembly, gelation, and subsequent reduction of MoS2/LCGO composite to form a flexible, high performance electrode for charge storage. The gelation process occurs directly in the mixed dispersion of MoS2 and LCGO nanosheets at a low temperature (70 °C) and normal atmosphere (1 atm). The MG film with 75 wt% of MoS2 exhibits a high reversible capacity of 800 mAh g?1 at a current density of 100 mA g?1. It also demonstrates excellent rate capability, and excellent cycling stability with no capacity drop over 500 charge/discharge cycles at a current density of 400 mA g?1.  相似文献   

6.
On account of increasing demand for energy storage devices, sodium‐ion batteries (SIBs) with abundant reserve, low cost, and similar electrochemical properties have the potential to partly replace the commercial lithium‐ion batteries. In this study, a facile metal‐organic framework (MOF)‐derived selenidation strategy to synthesize in situ carbon‐encapsulated selenides as superior anode for SIBs is rationally designed. These selenides with particular micro‐ and nanostructured features deliver ultrastable cycling performance at high charge–discharge rate and demonstrate ultraexcellent rate capability. For example, the uniform peapod‐like Fe7Se8@C nanorods represent a high specific capacity of 218 mAh g?1 after 500 cycles at 3 A g?1 and the porous NiSe@C spheres display a high specific capacity of 160 mAh g?1 after 2000 cycles at 3 A g?1. The current simple MOF‐derived method could be a promising strategy for boosting the development of new functional inorganic materials for energy storage, catalysis, and sensors.  相似文献   

7.
Urchin‐like CoSe2 assembled by nanorods has been synthesized via simple solvothermal route and has been first applied as an anode material for sodium‐ion batteries (SIBs) with ether‐based electrolytes. The CoSe2 delivers excellent sodiation and desodiation properties when using 1 m NaCF3SO3 in diethyleneglycol dimethylether as an electrolyte and cycling between 0.5 and 3.0 V. A high discharge capacity of 0.410 Ah g?1 is obtained at 1 A g?1 after 1800 cycles, corresponding to a capacity retention of 98.6% calculated from the 30th cycle. Even at an ultrahigh rate of 50 A g?1, the capacity still maintains 0.097 Ah g?1. The reaction mechanism of the as‐prepared CoSe2 is also investigated. The results demonstrate that at discharged 1.56 V, insertion reaction occurs, while two conversion reactions take place at the second and third plateaus around 0.98 and 0.65 V. During the charge process, Co first reacts with Na2Se to form NaxCoSe2 and then turns back to CoSe2. In addition to Na/CoSe2 half cells, Na3V2(PO4)3/CoSe2 full cell with excessive amount of Na3V2(PO4)3 has been studied. The full cell exhibits a reversible capacity of 0.380 Ah g?1. This work definitely enriches the possibilities for anode materials for SIBs with high performance.  相似文献   

8.
Lithium and sodium thiophosphates (and related compounds) have recently attracted attention because of their potential use as solid electrolytes in solid‐state batteries. These compounds, however, exhibit only limited stability in practice as they react with the electrodes. The decomposition products partially remain redox active hence leading to excess capacity. The redox activity of thiophosphates is explicitly used to act as electrode for sodium‐ion batteries. Copper thiophosphate (Cu3PS4) is used as a model system. The storage behavior between 0.01 and 2.5 V versus Na+/Na is studied in half cells using different electrolytes with 1 m NaPF6 in diglyme showing the best result. Cu3PS4 shows highly reversible charge storage with capacities of about 580 mAh g?1 for more than 200 cycles @120 mA g?1 and about 450 mAh g?1 for 1400 cycles @1 A g?1. The redox behavior is studied by operando X‐ray diffraction and X‐ray photoelectron spectroscopy. During initial sodiation, Cu3PS4 undergoes a conversion reaction including the formation of Cu and Na2S. During cycling, the redox activity seems dominated by sulfur. Interestingly, the capacity of Cu3PS4 for lithium storage is smaller, leading to about 170 mAh g?1 after 200 cycles. The results demonstrate that thiophosphates can lead to reversible charge storage over several hundred cycles without any notable capacity decay.  相似文献   

9.
Cathode design is indispensable for building Li‐O2 batteries with long cycle life. A composite of carbon‐wrapped Mo2C nanoparticles and carbon nanotubes is prepared on Ni foam by direct hydrolysis and carbonization of a gel composed of ammonium heptamolybdate tetrahydrate and hydroquinone resin. The Mo2C nanoparticles with well‐controlled particle size act as a highly active oxygen reduction reactions/oxygen evolution reactions (ORR/OER) catalyst. The carbon coating can prevent the aggregation of the Mo2C nanoparticles. The even distribution of Mo2C nanoparticles results in the homogenous formation of discharge products. The skeleton of porous carbon with carbon nanotubes protrudes from the composite, resulting in extra voids when applied as a cathode for Li‐O2 batteries. The batteries deliver a high discharge capacity of ≈10 400 mAh g?1 and a low average charge voltage of ≈4.0 V at 200 mA g?1. With a cutoff capacity of 1000 mAh g?1, the Li‐O2 batteries exhibit excellent charge–discharge cycling stability for over 300 cycles. The average potential polarization of discharge/charge gaps is only ≈0.9 V, demonstrating the high ORR and OER activities of these Mo2C nanoparticles. The excellent cycling stability and low potential polarization provide new insights into the design of highly reversible and efficient cathode materials for Li‐O2 batteries.  相似文献   

10.
SiOx‐containing graphite composites have aroused great interests as the most promising alternatives for practical application in high‐performance lithium‐ion batteries. However, limited loading amount of SiOx on the surface of graphite and some inherent disadvantages of SiOx such as huge volume variation and poor electronic conductivity result in unsatisfactory electrochemical performance. Herein, a novel and facile fabrication approach is developed to synthesize high‐performance SiOx/C composites with graphite‐like structure in which SiOx particles are dispersed and anchored in the carbon materials by restoring original structure of artificial graphite. The multicomponent carbon materials are favorable for addressing the disadvantages of SiOx‐based anodes, especially for the formation of stable solid electrolyte interphase, maintaining structural integrity of electrode materials and improving electrical conductivity of electrode. The resultant SiOx/C anodes demonstrate high reversible capacities (645 mA h g?1), excellent cycling stability (≈90% capacity retention for 500 cycles), and superior rate capabilities. Even at high pressing density (1.3 g cm?3), SiOx/C anodes still present superior cycling performance due to the high tap density and structural integrity of electrode materials. The proposed synthetic method can also be developed to address other anode materials with inferior electronic conductivity and huge volume variation.  相似文献   

11.
Flexible energy storage devices play a pivotal role in realizing the full potential of flexible electronics. This work presents high‐performance, all‐solid‐state, flexible supercapacitors by employing an innovative multilevel porous graphite foam (MPG). MPGs exhibit superior properties, such as large specific surface area, high electric conductivity, low mass density, high loading efficiency of pseudocapacitive materials, and controlled corrugations for accommodating mechanical strains. When loaded with pseudocapacitive manganese oxide (Mn3O4), the MPG/Mn3O4 (MPGM) composites achieve a specific capacitance of 538 F g?1 (1 mV s?1) and 260 F g?1 (1 mV s?1) based on the mass of pure Mn3O4 and entire electrode composite, respectively. Both are among the best of Mn3O4‐based supercapacitors. The MPGM is mechanically robust and can go through 1000 mechanical bending cycles with only 1.5% change in electric resistance. When integrated as all‐solid‐state symmetric supercapacitors, they offer a full cell specific capacitance as high as 53 F g?1 based on the entire electrode and retain 80% of capacitance after 1000 continuous mechanical bending cycles. Furthermore, the all‐solid‐state flexible supercapacitors are incorporated with strain sensors into self‐powered flexible devices for detection of both coarse and fine motions on human skins, i.e., those from finger bending and heart beating.  相似文献   

12.
One of the major challenges to develop high‐performance lithium–oxygen (Li–O2) battery is to find effective cathode catalysts and design porous architecture for the promotion of both oxygen reduction reactions and oxygen evolution reactions. Herein, the synthesis of mesoporous carbon nanocubes as a new cathode nanoarchitecture for Li–O2 batteries is reported. The oxygen electrodes made of mesoporous carbon nanocubes contain numerously hierarchical mesopores and macropores, which can facilitate oxygen diffusion and electrolyte impregnation throughout the electrode, and provide sufficient spaces to accommodate insoluble discharge products. When they are applied as cathode catalysts, the Li–O2 cells deliver discharge capacities of 26 100 mA h g?1 at 200 mA g?1, which is much higher than that of commercial carbon black catalysts. Furthermore, the mesoporous nanocube architecture can also serve as a conductive host structure for other highly efficient catalysts. For instance, the Ru functionalized mesoporous carbon nanocubes show excellent catalytic activities toward oxygen evolution reactions. Li–O2 batteries with Ru functionalized mesoporous carbon nanocube catalysts demonstrate a high charge/discharge electrical energy efficiency of 86.2% at 200 mA g?1 under voltage limitation and a good cycling performance up to 120 cycles at 400 mA g?1 with the curtaining capacity of 1000 mA h g?1.  相似文献   

13.
Trimetal Fe0.8CoMnO4 (FCMO) nanocrystals with a diameter of about 50 nm perfectly embedded in N doped‐carbon composite nanofibers (denoted as FCMO@C) are successfully prepared through integrating double‐nozzle electrospinning with a drying and calcination process. The as‐prepared FCMO@C nanofibers maintain a high reversible capacity of 420 mAh g?1 and about 90% capacity retention after 200 cycles at 0.1 A g?1. For a long‐term cycle, the FCMO@C electrode exhibits excellent cycling stability (87% high capacity retention at 1 A g?1 after 950 cycles). Kinetic analysis demonstrates that the electrochemical characteristics of the FCMO@C corresponds to the pseudocapacitive approach in charge storage as an anode for sodium ion batteries, which dominantly attributes the credit to FCMO nanocrystals to shorten the migration distance of Na+ ions and the nitrogen‐doped carbon skeleton to enhance the electronic transmission and favorably depress the volume expansion during the repeated insertion/extraction of Na+ ions. More significantly, a self‐supported mechanism via continuous electrochemical redox reaction of Fe, Co, and Mn can effectively relieve the volume change during charge and discharge. Therefore, this work can provide a new avenue to improve the sodium storage performance of the oxide anode materials.  相似文献   

14.
Organic redox‐active molecules are inborn electrodes to store large‐radius potassium (K) ion. High‐performance organic cathodes are important for practical usage of organic potassium‐ion batteries (OPIBs). However, small‐molecule organic cathodes face serious dissolution problems against liquid electrolytes. A novel insoluble small‐molecule organic cathode [N,N′‐bis(2‐anthraquinone)]‐perylene‐3,4,9,10‐tetracarboxydiimide (PTCDI‐DAQ, 200 mAh g?1) is initially designed for OPIBs. In half cells (1–3.8 V vs K+/K) using 1 m KPF6 in dimethoxyethane (DME), PTCDI‐DAQ delivers a highly stable specific capacity of 216 mAh g?1 and still holds the value of 133 mAh g?1 at an ultrahigh current density of 20 A g?1 (100 C). Using reduced potassium terephthalate (K4TP) as the organic anode, the resulting K4TP||PTCDI‐DAQ OPIBs with the electrolyte 1 m KPF6 in DME realize a high energy density of maximum 295 Wh kg?1cathode (213 mAh g?1cathode × 1.38 V) and power density of 13 800 W Kg?1cathode (94 mAh g?1 × 1.38 V @ 10 A g?1) during the working voltage of 0.2–3.2 V. Meanwhile, K4TP||PTCDI‐DAQ OPIBs fulfill the superlong lifespan with a stable discharge capacity of 62 mAh g?1cathode after 10 000 cycles and 40 mAh g?1cathode after 30 000 cycles (3 A g?1). The integrated performance of PTCDI‐DAQ can currently defeat any cathode reported in K‐ion half/full cells.  相似文献   

15.
This work presents a design of sandwich MoO3/C hybrid nanostructure via calcination of the dodecylamine‐intercalated layered α‐MoO3, leading to the in situ production of the interlayered graphene layer. The sample with a high degree of graphitization of graphene layer and more interlayered void region exhibits the most outstanding energy storage performance. The obtained material is capable of delivering a high specific capacitance of 331 F g?1 at a current density of 1 A g?1 and retained 71% capacitance at 10 A g?1. In addition, nearly no discharge capacity decay between 1000 and 10 000 continuous charge–discharge cycles is observed at a high current density of 10 A g?1, indicating an excellent specific capacitance retention ability. The exceptional rate capability endows the electrode with a high energy density of 41.2 W h kg?1 and a high power density of 12.0 kW kg?1 simultaneously. The excellent performance is attributed to the sandwich hybrid nanostructure of MoO3/C with broad ion diffusion pathway, low charge‐transfer resistance, and robust structure at high current density for long‐time cycling. The present work provides an insight into the fabrication of novel electrode materials with both enhanced rate capability and cyclability for potential use in supercapacitor and other energy storage devices.  相似文献   

16.
Transition metal oxides, possessing high theoretical specific capacities, are promising anode materials for sodium‐ion batteries. However, the sluggish sodiation/desodiation kinetics and poor structural stability restrict their electrochemical performance. To achieve high and fast Na storage capability, in this work, rambutan‐like hybrid hollow spheres of carbon confined Co3O4 nanoparticles are synthesized by a facile one‐pot hydrothermal treatment with postannealing. The hierarchy hollow structure with ultrafine Co3O4 nanoparticles embedded in the continuous carbon matrix enables greatly enhanced structural stability and fast electrode kinetics. When tested in sodium‐ion batteries, the hollow structured composite electrode exhibits an outstandingly high reversible specific capacity of 712 mAh g?1 at a current density of 0.1 A g?1, and retains a capacity of 223 mAh g?1 even at a large current density of 5 A g?1. Besides the superior Na storage capability, good cycle performance is demonstrated for the composite electrode with 74.5% capacity retention after 500 cycles, suggesting promising application in advanced sodium‐ion batteries.  相似文献   

17.
Manganese‐based metal oxide electrode materials are of great importance in electrochemical energy storage for their favorable redox behavior, low cost, and environmental friendliness. However, their storage capacity and cycle life in aqueous Na‐ion electrolytes is not satisfactory. Herein, the development of a biphase cobalt–manganese oxide (Co? Mn? O) nanostructured electrode material is reported, comprised of a layered MnO2?H2O birnessite phase and a (Co0.83Mn0.13Va0.04)tetra(Co0.38Mn1.62)octaO3.72 (Va: vacancy; tetra: tetrahedral sites; octa: octahedral sites) spinel phase, verified by neutron total scattering and pair distribution function analyses. The biphase Co? Mn? O material demonstrates an excellent storage capacity toward Na‐ions in an aqueous electrolyte (121 mA h g?1 at a scan rate of 1 mV s?1 in the half‐cell and 81 mA h g?1 at a current density of 2 A g?1 after 5000 cycles in full‐cells), as well as high rate performance (57 mA h g?1 a rate of 360 C). Electrokinetic analysis and in situ X‐ray diffraction measurements further confirm that the synergistic interaction between the spinel and layered phases, as well as the vacancy of the tetrahedral sites of spinel phase, contribute to the improved capacity and rate performance of the Co? Mn? O material by facilitating both diffusion‐limited redox and capacitive charge storage processes.  相似文献   

18.
Rechargeable aluminum‐ion batteries have drawn considerable attention as a new energy storage system, but their applications are still significantly impeded by critical issues such as low energy density and the lack of excellent electrolytes. Herein, a high‐energy aluminum‐manganese battery is fabricated by using a Birnessite MnO2 cathode, which can be greatly optimized by a divalence manganese ions (Mn2+) electrolyte pre‐addition strategy. The battery exhibits a remarkable energy density of 620 Wh kg?1 (based on the Birnessite MnO2 material) and a capacity retention above 320 mAh g?1 for over 65 cycles, much superior to that with no Mn2+ pre‐addition. The electrochemical reactions of the battery are scrutinized by a series of analysis techniques, indicating that the Birnessite MnO2 pristine cathode is first reduced as Mn2+ to dissolve in the electrolyte upon discharge, and AlxMn(1?x)O2 is then generated upon charge, serving as a reversible cathode active material in following cycles. This work provides new opportunities for the development of high‐performance and low‐cost aqueous aluminum‐ion batteries for prospective applications.  相似文献   

19.
Solid‐state lithium (Li) batteries using solid electrolytes and Li anodes are highly desirable because of their high energy densities and intrinsic safety. However, low ambient‐temperature conductivity and poor interface compatibility of solid electrolytes as well as Li dendrite formation cause large polarization and poor cycling stability. Herein, a high transference number intercalated composite solid electrolyte (CSE) is prepared by the combination of a solution‐casting and hot‐pressing method using layered lithium montmorillonite, poly(ethylene carbonate), lithium bis(fluorosulfonyl)imide, high‐voltage fluoroethylene carbonate additive, and poly(tetrafluoroethylene) binder. The electrolyte presents high ionic conductivity (3.5 × 10?4 S cm?1), a wide electrochemical window (4.6 V vs Li+/Li), and high ionic transference number (0.83) at 25 °C. In addition, a 3D Li anode is also fabricated via a facile thermal infusion strategy. The synergistic effect of high transference number intercalated electrolyte and 3D Li anode is more favorable to suppress Li dendrites in a working battery. The solid‐state batteries based on LiFePO4 (Al2O3 @ LiNi0.5Co0.2Mn0.3O2), CSE, and 3D Li deliver admirable cycling stability with discharge capacity 145.9 mAh g?1 (150.7 mAh g?1) and capacity retention 91.9% after 200 cycles at 0.5 C (92.0% after 100 cycles at 0.2 C) at 25 °C. This work affords a splendid strategy for high‐performance solid‐state battery.  相似文献   

20.
Lithium‐carbon dioxide (Li‐CO2) batteries are considered promising energy‐storage systems in extreme environments with ultra‐high CO2 concentrations, such as Mars with 96% CO2 in the atmosphere, due to their potentially high specific energy densities. However, besides having ultra‐high CO2 concentration, another vital but seemingly overlooked fact lies in that Mars is an extremely cold planet with an average temperature of approximately ?60 °C. The existing Li‐CO2 batteries could work at room temperature or higher, but they will face severe performance degradation or even a complete failure once the ambient temperature falls below 0 °C. Herein, ultra‐low‐temperature Li‐CO2 batteries are demonstrated by designing 1,3‐dioxolane‐based electrolyte and iridium‐based cathode, which show both a high deep discharge capacity of 8976 mAh g?1 and a long lifespan of 150 cycles (1500 h) with a fixed 500 mAh g?1 capacity per cycle at ?60 °C. The easy‐to‐decompose discharge products in small size on the cathode and the suppressed parasitic reactions both in the electrolyte and on the Li anode at low temperatures together contribute to the above high electrochemical performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号