首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Solid‐state lithium (Li) batteries using solid electrolytes and Li anodes are highly desirable because of their high energy densities and intrinsic safety. However, low ambient‐temperature conductivity and poor interface compatibility of solid electrolytes as well as Li dendrite formation cause large polarization and poor cycling stability. Herein, a high transference number intercalated composite solid electrolyte (CSE) is prepared by the combination of a solution‐casting and hot‐pressing method using layered lithium montmorillonite, poly(ethylene carbonate), lithium bis(fluorosulfonyl)imide, high‐voltage fluoroethylene carbonate additive, and poly(tetrafluoroethylene) binder. The electrolyte presents high ionic conductivity (3.5 × 10?4 S cm?1), a wide electrochemical window (4.6 V vs Li+/Li), and high ionic transference number (0.83) at 25 °C. In addition, a 3D Li anode is also fabricated via a facile thermal infusion strategy. The synergistic effect of high transference number intercalated electrolyte and 3D Li anode is more favorable to suppress Li dendrites in a working battery. The solid‐state batteries based on LiFePO4 (Al2O3 @ LiNi0.5Co0.2Mn0.3O2), CSE, and 3D Li deliver admirable cycling stability with discharge capacity 145.9 mAh g?1 (150.7 mAh g?1) and capacity retention 91.9% after 200 cycles at 0.5 C (92.0% after 100 cycles at 0.2 C) at 25 °C. This work affords a splendid strategy for high‐performance solid‐state battery.  相似文献   

2.
Rechargeable aluminum batteries (RABs) are extensively developed due to their cost‐effectiveness, eco‐friendliness, and low flammability and the earth abundance of their electrode materials. However, the commonly used RAB ionic liquid (IL) electrolyte is highly moisture‐sensitive and corrosive. To address these problems, a 4‐ethylpyridine/AlCl3 IL is proposed. The effects of the AlCl3 to 4‐ethylpyridine molar ratio on the electrode charge–discharge properties are systematically examined. A maximum graphite capacity of 95 mAh g?1 is obtained at 25 mA g?1. After 1000 charge–discharge cycles, ≈85% of the initial capacity can be retained. In situ synchrotron X‐ray diffraction is employed to examine the electrode reaction mechanism. In addition, low corrosion rates of Al, Cu, Ni, and carbon‐fiber paper electrodes are confirmed in the 4‐ethylpyridine/AlCl3 IL. When opened to the ambient atmosphere, the measured capacity of the graphite cathode is only slightly lower than that found in a N2‐filled glove box; moreover, the capacity retention upon 100 cycles is as high as 75%. The results clearly indicate the great potential of this electrolyte for practical RAB applications.  相似文献   

3.
A new concept for reusable eco‐friendly hydrogel electrolytes based on cellulose is introduced. The reported electrolytes are designed and engineered through a simple, fast, low‐cost, and eco‐friendly dissolution method of microcrystalline cellulose at low temperature using an aqueous LiOH/urea solvent system. The cellulose solution is combined with carboxymethyl cellulose, followed by the regeneration and simultaneous ion incorporation. The produced free standing cellulose‐based electrolyte films exhibit interesting properties for application in flexible electrochemical devices, such as biosensors or electrolyte‐gated transistors (EGTs), because of their high specific capacitances (4–5 µF cm?2), transparency, and flexibility. Indium–gallium–zinc‐oxide EGTs on glass with laminated cellulose‐based hydrogel electrolytes (CHEs) as the gate dielectric are produced presenting a low working voltage (<2 V), showing an on–off current ratio (I on/off) of 106, a subthreshold swing lower than 0.2 V dec?1, and saturation mobility (μSat) reaching 26 cm2 V?1 s?1. The flexible CHE‐gated transistors on paper are also demonstrated, which operate at switching frequencies up to 100 Hz. Combining the flexibility of the EGTs on paper with the reusability of the developed CHEs is a breakthrough toward biodegradable advanced functional materials allied with disposable/recyclable and low‐cost electronic devices.  相似文献   

4.
Non‐nucleophilic electrolytes that can reversibly plate/strip Mg are essential for realizing high‐performance rechargeable Mg/S batteries. In contrast to organometallic electrolytes, all‐inorganic electrolytes based on MgCl2‐AlCl3 complexes are more cost‐effective and hold better stability to air and moisture. A recently developed electrolyte that contains tetrahydrofuran solvated divalent Mg cation, [Mg·6THF][AlCl4]2, has exhibited decent compatibility with the sulfur cathode. However, it suffers a large overpotential and short cycle life, which hinders its applications in Mg/S batteries. Here, an efficient plating/stripping of Mg is realized successfully by using LiCl to dissolve MgCl2 from the electrolyte/electrode interface. As a result, the overpotential of Mg plating/stripping is remarkably reduced to 140/140 mV at a current density of 500 µA cm?2. Both experiments and density functional theory (DFT) calculations reveal that the LiCl‐assisted solubilization of MgCl2 facilitates the exposure of fresh surface on the Mg anode. Utilizing such an LiCl‐activation strategy, Mg/S full batteries with a significantly extended cycle life of over 500 cycles, as well as coulombic efficiency close to 100%, are achieved successfully. This work demonstrates the role of LiCl‐assisted interface activation on extending the cycle‐life Mg/S batteries with all‐inorganic electrolytes.  相似文献   

5.
Despite significant interest toward solid‐state electrolytes owing to their superior safety in comparison to liquid‐based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high‐power density batteries. Here, a novel quasi‐solid Li+ ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm?2 at room temperature. The cycling overpotential is dropped by 75% in comparison to BP‐free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ ions around (trifluoromethanesulfonyl)imide (TFSI?) pairs and ethylene‐oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+ transport through the polymer host. Density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid‐state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long‐life cycling.  相似文献   

6.
Highly stretchable, high‐mobility, and free‐standing coplanar‐type all‐organic transistors based on deformable solid‐state elastomer electrolytes are demonstrated using ionic thermoplastic polyurethane (i‐TPU), thereby showing high reliability under mechanical stimuli as well as low‐voltage operation. Unlike conventional ionic dielectrics, the i‐TPU electrolyte prepared herein has remarkable characteristics, i.e., a large specific capacitance of 5.5 µF cm?2, despite the low weight ratio (20 wt%) of the ionic liquid, high transparency, and even stretchability. These i‐TPU‐based organic transistors exhibit a mobility as high as 7.9 cm2 V?1 s?1, high bendability (Rc, radius of curvature: 7.2 mm), and good stretchability (60% tensile strain). Moreover, they are suitable for low‐voltage operation (VDS = ?1.0 V, VGS = ?2.5 V). In addition, the electrical characteristics such as mobility, on‐current, and threshold voltage are maintained even in the concave and convex bending state (bending tensile strain of ≈3.4%), respectively. Finally, free‐standing, fully stretchable, and semi‐transparent coplanar‐type all‐organic transistors can be fabricated by introducing a poly(3,4‐ethylenedioxythiophene):polystyrene sulfonic acid layer as source/drain and gate electrodes, thus achieving low‐voltage operation (VDS = ?1.5 V, VGS = ?2.5 V) and an even higher mobility of up to 17.8 cm2 V?1 s?1. Moreover, these devices withstand stretching up to 80% tensile strain.  相似文献   

7.
High energy density, durability, and flexibility of supercapacitors are required urgently for the next generation of wearable and portable electronic devices. Herein, a novel strategy is introduced to boost the energy density of flexible soild‐state supercapacitors via rational design of hierarchically graphene nanocomposite (GNC) electrode material and employing an ionic liquid gel polymer electrolyte. The hierarchical graphene nanocomposite consisting of graphene and polyaniline‐derived carbon is synthesized as an electrode material via a scalable process. The meso/microporous graphene nanocomposites exhibit a high specific capacitance of 176 F g?1 at 0.5 A g?1 in the ionic liquid 1‐ethyl‐3‐methylimidazolium tetrafluoroborate (EMIBF4) with a wide voltage window of 3.5 V, good rate capability of 80.7% in the range of 0.5–10 A g?1 and excellent stability over 10 000 cycles, which is attributed to the superior conductivity (7246 S m?1), and quite large specific surface area (2416 m2 g?1) as well as hierarchical meso/micropores distribution of the electrode materials. Furthermore, flexible solid‐state supercapacitor devices based on the GNC electrodes and gel polymer electrolyte film are assembled, which offer high specific capacitance of 180 F g?1 at 1 A g?1, large energy density of 75 Wh Kg?1, and remarkable flexible performance under consecutive bending conditions.  相似文献   

8.
With the significant progress made in the development of cathodes in lithium‐sulfur (Li‐S) batteries, the stability of Li metal anodes becomes a more urgent challenge in these batteries. Here the systematic investigation of the stability of the anode/electrolyte interface in Li‐S batteries with concentrated electrolytes containing various lithium salts is reported. It is found that Li‐S batteries using LiTFSI‐based electrolytes are more stable than those using LiFSI‐based electrolytes. The decreased stability is because the N–S bond in the FSI? anion is fairly weak and the scission of this bond leads to the formation of lithium sulfate (LiSOx) in the presence of polysulfide species. In contrast, in the LiTFSI‐based electrolyte, the lithium metal anode tends to react with polysulfide to form lithium sulfide (LiSx), which is more reversible than LiSOx formed in the LiFSI‐based electrolyte. This fundamental difference in the bond strength of the salt anions in the presence of polysulfide species leads to a large difference in the stability of the anode‐electrolyte interface and performance of the Li‐S batteries with electrolytes composed of these salts. Therefore, anion selection is one of the key parameters in the search for new electrolytes for stable operation of Li‐S batteries.  相似文献   

9.
Alkoxy side‐chain tethered polyfluorene conjugated polyelectrolyte (CPE), poly[(9,9‐bis((8‐(3‐methyl‐1‐imidazolium)octyl)‐2,7‐fluorene)‐alt‐(9,9‐bis(2‐(2‐methoxyethoxy)ethyl)‐fluorene)] dibromide (F8imFO4), is utilized to obtain CPE‐hybridized ZnO nanoparticles (NPs) (CPE:ZnO hybrid NPs). The surface defects of ZnO NPs are passivated through coordination interactions with the oxygen atoms of alkoxy side‐chains and the bromide anions of ionic pendent groups from F8imFO4 to the oxygen vacancies of ZnO NPs, and thereby the fluorescence quenching at the interface of yellow‐emitting poly(p‐phenylene vinylene)/CPE:ZnO hybrid NPs is significantly reduced at the CPE concentration of 4.5 wt%. Yellow‐emitting polymer light‐emitting diodes (PLEDs) with CPE(4.5 wt%):ZnO hybrid NPs as a cathode interfacial layer show the highest device efficiencies of 11.7 cd A?1 at 5.2 V and 8.6 lm W?1 at 3.8 V compared to the ZnO NP only (4.8 cd A?1 at 7 V and 2.2 lm W?1 at 6.6 V) or CPE only (7.3 cd A?1 at 5.2 V and 4.9 lm W?1 at 4.2 V) devices. The results suggest here that the CPE:ZnO hybrid NPs has a great potential to improve the device performance of organic electronics.  相似文献   

10.
Ionic liquid (IL) electrolytes with concentrated Li salt can ensure safe, high‐performance Li metal batteries (LMBs) but suffer from high viscosity and poor ionic transport. A locally concentrated IL (LCIL) electrolyte with a non‐solvating, fire‐retardant hydrofluoroether (HFE) is presented. This rationally designed electrolyte employs lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), 1‐methyl‐1‐propyl pyrrolidinium bis(fluorosulfonyl)imide (P13FSI) and 1,1,2,2‐tetrafluoroethyl 2,2,3,3‐tetrafluoropropyl ether (TTE) as the IL and HFE, respectively (1:2:2 by mol). Adding TTE enables a Li‐concentrated IL electrolyte with low viscosity and good separator wettability, facilitating Li‐ion transport to the Li metal anode. The non‐flammability of TTE contributes to excellent thermal stability. Furthermore, synergy between the dual (FSI/TFSI) anions in the LCIL electrolyte can help modify the solid electrolyte interphase, increasing Li Coulombic efficiency and decreasing dendritic Li deposition. LMBs (Li||LiCoO2) employing the LCIL electrolyte exhibit good rate capability (≈89 mAh g?1 at 1.8 mA cm?2, room temperature) and long‐term cycling (≈80% retention after 400 cycles).  相似文献   

11.
A novel dioxaborinane‐contained solid state polymer electrolyte poly((2‐phenyl‐1, 3, 2‐dioxaborolane‐4‐yl) methyl methacrylate) (P(GMMA‐PBA)) for symmetrical capacitors (SCs) is prepared through solution casting technique. Due to the effect of electron withdrawing of dioxaborinane groups and irregular distributed porous microstructures, the solid polymer electrolyte (SPE) exhibits an optimal ionic conductivity of 0.5 mS cm?1 at ambient conditions. The electronic properties of dioxaborinane groups and their interaction with anions of electrolyte salts are further studied with density functional theory calculations. SCs fabricated with this polymer film as electrolyte and reduced graphene oxide as electrodes provide a broad potential window of 2.5 V. The energy density of this capacitor ups to 22.49 Wh kg?1 with a power density of 6.34 kW kg?1 at 5 A g?1. After 3000 charge–discharge cycles, the capacitance of the symmetrical SPE capacitor maintains 90% of its initial values.  相似文献   

12.
The developments of rationally designed binder‐free metal chalcogenides decorated flexible electrodes are of paramount importance for advanced energy storage devices. Herein, binder‐free patronite (VS4) flower‐like nanostructures are facilely fabricated on a carbon cloth (CC) using a facile hydrothermal method for high‐performance supercapacitors. The growth density and morphology of VS4 nanostructures on CC are also controlled by varying the concentrations of vanadium and sulfur sources along with the complexing agent in the growth solution. The optimal electrode with an appropriate growth concentration (VS4‐CC@VS‐3) demonstrates a considerable pseudocapacitance performance in the ionic liquid (IL) electrolyte (1‐ethyl‐3‐methylimidazolium trifluoromethanesulfonate), with a high operating potential of 2 V. Utilizing VS4‐CC@VS‐3 as both positive and negative electrodes, the IL‐based symmetric supercapacitor is assembled, which demonstrates a high areal capacitance of 536 mF cm?2 (206 F g?1) and excellent cycling durability (93%) with superior energy and power densities of 74.4 µWh cm?2 (28.6 Wh kg?1) and 10154 µW cm?2 (9340 W kg?1), respectively. As for the high energy storage performance, the device stably energizes various portable electronic applications for a long time, which make the fabricated composite material open up news for the fabrication of fabrics supported binder‐free chalcogenides for high‐performance energy storage devices.  相似文献   

13.
The stability of electrolytes against highly reactive, reduced oxygen species is crucial for the development of rechargeable Li–O2 batteries. In this work, the effect of lithium salt concentration in 1,2‐dimethoxyethane (DME)‐based electrolytes on the cycling stability of Li–O2 batteries is investigated systematically. Cells with highly concentrated electrolyte demonstrate greatly enhanced cycling stability under both full discharge/charge (2.0–4.5 V vs Li/Li+) and the capacity‐limited (at 1000 mAh g?1) conditions. These cells also exhibit much less reaction residue on the charged air‐electrode surface and much less corrosion of the Li‐metal anode. Density functional theory calculations are used to calculate molecular orbital energies of the electrolyte components and Gibbs activation energy barriers for the superoxide radical anion in the DME solvent and Li+–(DME) n solvates. In a highly concentrated electrolyte, all DME molecules are coordinated with salt cations, and the C–H bond scission of the DME molecule becomes more difficult. Therefore, the decomposition of the highly concentrated electrolyte can be mitigated, and both air cathodes and Li‐metal anodes exhibit much better reversibility, resulting in improved cyclability of Li–O2 batteries.  相似文献   

14.
A new class of biofriendly ionogels produced by gelation of microcellulose thin films with tailored 1‐ethyl‐3‐methylimidazolium methylphosphonate ionic liquids are demonstrated. The cellulose ionogels show promising properties for application in flexible electronics, such as transparency, flexibility, transferability, and high specific capacitances of 5 to 15 μF cm?2. They can be laminated onto any substrate such as multilayer‐coated paper and act as high capacitance dielectrics for inorganic (spray‐coated ZnO and colloidal ZnO nanorods) and organic (poly[3‐hexylthiophene], P3HT) electrolyte‐gated field‐effect transistors (FETs), that operate at very low voltages (<2 V). Field‐effect mobilities in ionogel‐gated spray‐coated ZnO FETs reach 75 cm2 V?1 s?1 and a typical increase of mobility with decreasing specific capacitance of the ionogel is observed. Solution‐processed, colloidal ZnO nanorods and laminated cellulose ionogels enable the fabrication of the first electrolyte‐gated, flexible circuits on paper, which operate at bending radii down to 1.1 mm.  相似文献   

15.
Manganese oxide (MnO2) nanosplotches (NSs) are deposited on N‐ and S‐doped ordered mesoporous carbon (N,S‐CMK‐3) essentially blocking microporosity. The obtained N,S‐CMK‐3/MnO2 composite materials are assembled into ionic liquid (IL)‐based symmetric supercapacitors, which exhibit a high specific capacitance of 200 F g?1 (0–3.5 V) at a scan rate of 2 mV s?1, and good rate stability with 55.5% capacitance retention at a scan rate of 100 mV s?1. The device can operate in a wide temperature range (?20 to 60 °C), and high cycling stability of N,S‐CMK‐3/MnO2 composite electrode is demonstrated. Lower energy of ?3.56 eV can be achieved for the adsorption of 1‐ethyl‐3‐methylimidazolium+ (EMIM+) cation on the edge between MnO2 NSs and N,S‐CMK‐3 than on the plane of MnO2 NS (?3.04 eV), both being more preferred than the surface of pristine N,S‐CMK‐3 (?1.52 eV). This strengthening of the ion adsorption at the three‐phase boundary between N,S‐CMK‐3, MnO2, and IL leads to enhancement of the specific capacity as compared to nondoped or MnO2‐free reference materials. Supercapacitors based on such composite electrodes show significantly enhanced areal capacity pointing to energy storage in the mesopores rather than in the electrochemical surface layer, demonstrating a new energy storage mechanism in ILs.  相似文献   

16.
Hydrogen production via water electrocatalysis is limited by the sluggish anodic oxygen evolution reaction (OER) that requires a high overpotential. In response, a urea‐assisted energy‐saving alkaline hydrogen‐production system has been investigated by replacing OER with a more oxidizable urea oxidation reaction (UOR). A bimetal heterostructure CoMn/CoMn2O4 as a bifunctional catalyst is constructed in an alkaline system for both urea oxidation and hydrogen evolution reaction (HER). Based on the Schottky heterojunction structure, CoMn/CoMn2O4 induces self‐driven charge transfer at the interface, which facilitates the absorption of reactant molecules and the fracture of chemical bonds, therefore triggering the decomposition of water and urea. As a result, the heterostructured electrode exhibits ultralow potentials of ?0.069 and 1.32 V (vs reversible hydrogen electrode) to reach 10 mA cm?2 for HER and UOR, respectively, in alkaline solution, and the full urea electrolysis driven by CoMn/CoMn2O4 delivers 10 mA cm?2 at a relatively low potential of 1.51 V and performs stably for more than 15 h. This represents a novel strategy of Mott–Schottky hybrids in electrocatalysts and should inspire the development of sustainable energy conversion by combining hydrogen production and sewage treatment.  相似文献   

17.
Aqueous zinc‐ion batteries are receiving increasing attention; however, the development of high‐voltage cathodes is limited by the narrow voltage window of conventional aqueous electrolytes. Herein, it is reported that Na3V2(PO4)2O1.6F1.4 exhibits the excellent performance, optimal to date, among polyanion cathode materials in a novel neutral water‐in‐bisalts electrolyte of 25 m ZnCl2 + 5 m NH4Cl. It delivers a reversible capacity of 155 mAh g?1 at 50 mA g?1, a high average operating potential of ≈1.46 V, and stable cyclability of 7000 cycles at 2 A g?1.  相似文献   

18.
Rechargeable aluminum‐ion batteries have drawn considerable attention as a new energy storage system, but their applications are still significantly impeded by critical issues such as low energy density and the lack of excellent electrolytes. Herein, a high‐energy aluminum‐manganese battery is fabricated by using a Birnessite MnO2 cathode, which can be greatly optimized by a divalence manganese ions (Mn2+) electrolyte pre‐addition strategy. The battery exhibits a remarkable energy density of 620 Wh kg?1 (based on the Birnessite MnO2 material) and a capacity retention above 320 mAh g?1 for over 65 cycles, much superior to that with no Mn2+ pre‐addition. The electrochemical reactions of the battery are scrutinized by a series of analysis techniques, indicating that the Birnessite MnO2 pristine cathode is first reduced as Mn2+ to dissolve in the electrolyte upon discharge, and AlxMn(1?x)O2 is then generated upon charge, serving as a reversible cathode active material in following cycles. This work provides new opportunities for the development of high‐performance and low‐cost aqueous aluminum‐ion batteries for prospective applications.  相似文献   

19.
All‐solid‐state flexible asymmetric supercapacitors (ASCs) are developed by utilization of graphene nanoribbon (GNR)/Co0.85Se composites as the positive electrode, GNR/Bi2Se3 composites as the negative electrode, and polymer‐grafted‐graphene oxide membranes as solid‐state electrolytes. Both GNR/Co0.85Se and GNR/Bi2Se3 composite electrodes are developed by a facile one‐step hydrothermal growth method from graphene oxide nanoribbons as the nucleation framework. The GNR/Co0.85Se composite electrode exhibits a specific capacity of 76.4 mAh g?1 at a current density of 1 A g?1 and the GNR/Bi2Se3 composite electrode exhibits a specific capacity of 100.2 mAh g?1 at a current density of 0.5 A g?1. Moreover, the stretchable membrane solid‐state electrolytes exhibit superior ionic conductivity of 108.7 mS cm?1. As a result, the flexible ASCs demonstrate an operating voltage of 1.6 V, an energy density of 30.9 Wh kg?1 at the power density of 559 W kg?1, and excellent cycling stability with 89% capacitance retention after 5000 cycles. All these results demonstrate that this study provides a simple, scalable, and efficient approach to fabricate high performance flexible all‐solid‐state ASCs for energy storage.  相似文献   

20.
Urchin‐like CoSe2 assembled by nanorods has been synthesized via simple solvothermal route and has been first applied as an anode material for sodium‐ion batteries (SIBs) with ether‐based electrolytes. The CoSe2 delivers excellent sodiation and desodiation properties when using 1 m NaCF3SO3 in diethyleneglycol dimethylether as an electrolyte and cycling between 0.5 and 3.0 V. A high discharge capacity of 0.410 Ah g?1 is obtained at 1 A g?1 after 1800 cycles, corresponding to a capacity retention of 98.6% calculated from the 30th cycle. Even at an ultrahigh rate of 50 A g?1, the capacity still maintains 0.097 Ah g?1. The reaction mechanism of the as‐prepared CoSe2 is also investigated. The results demonstrate that at discharged 1.56 V, insertion reaction occurs, while two conversion reactions take place at the second and third plateaus around 0.98 and 0.65 V. During the charge process, Co first reacts with Na2Se to form NaxCoSe2 and then turns back to CoSe2. In addition to Na/CoSe2 half cells, Na3V2(PO4)3/CoSe2 full cell with excessive amount of Na3V2(PO4)3 has been studied. The full cell exhibits a reversible capacity of 0.380 Ah g?1. This work definitely enriches the possibilities for anode materials for SIBs with high performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号